Probabilistic properties of neuron spiking time-series obtained in vivo

被引:10
|
作者
Bershadskii, A
Dremencov, E
Fukayama, D
Yadid, G
机构
[1] ICAR, IL-91000 Jerusalem, Israel
[2] Yale Univ, Mason Lab, New Haven, CT 06520 USA
[3] Bar Ilan Univ, Fac Life Sci, IL-52900 Ramat Gan, Israel
[4] Chuo Univ, Dept Phys, Tokyo 1128551, Japan
来源
EUROPEAN PHYSICAL JOURNAL B | 2001年 / 24卷 / 03期
关键词
D O I
10.1007/s10051-001-8691-4
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Probabilistic properties of spiking time-series obtained in vivo front singular neurons belonging to Red Nucleus of brain are analyzed for two groups of rats: genetically defined rat model of depression (Flinders Sensitive Rat Line - FSL) and a control (healthy) group. The FSL group shows a distribution of interspike intervals with a much longer tail than that found for normal rats. The former distribution (for the FSL group) indicates a power-law with exponent alpha = -1 +/- 0.1. A simple thermodynamic (noise) model is elaborated to explain obtained results.
引用
收藏
页码:409 / 413
页数:5
相关论文
共 50 条
  • [1] Probabilistic properties of neuron spiking time-series obtained in vivo
    A. Bershadskii
    E. Dremencov
    D. Fukayama
    G. Yadid
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 24 : 409 - 413
  • [2] Multifractal statistics and underlying kinetics of neuron spiking time-series
    Bershadskii, A
    Dremencov, E
    Fukayama, D
    Yadid, G
    [J]. PHYSICS LETTERS A, 2001, 289 (06) : 337 - 342
  • [3] Probabilistic time-series segmentation
    Kalantarian, Haik
    Sarrafzadeh, Majid
    [J]. PERVASIVE AND MOBILE COMPUTING, 2017, 41 : 397 - 412
  • [4] Online time-series forecasting using spiking reservoir
    George, Arun M.
    Dey, Sounak
    Banerjee, Dighanchal
    Mukherjee, Arijit
    Suri, Manan
    [J]. NEUROCOMPUTING, 2023, 518 : 82 - 94
  • [5] A Photonic Recurrent Neuron for Time-Series Classification
    Mourgias-Alexandris, George
    Passalis, Nikolaos
    Dabos, George
    Totovic, Angelina
    Tefas, Anastasios
    Pleros, Nikos
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (05) : 1340 - 1347
  • [6] A Comparison for Probabilistic Spiking Neuron Model and Spiking Integrated and Fired Neuron Model
    Wang Xiuqing
    Hou Zeng-Guang
    Zeng Hui
    Tan Min
    Wang Yongji
    [J]. 2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 5059 - 5064
  • [7] A Probabilistic Approach for InSAR Time-Series Postprocessing
    Chang, Ling
    Hanssen, Ramon F.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 421 - 430
  • [8] Graph Deep Factors for Probabilistic Time-series Forecasting
    Chen, Hongjie
    Rossi, Ryan A.
    Mahadik, Kanak
    Kim, Sungchul
    Eldardiry, Hoda
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (02)
  • [9] To spike or not to spike: A probabilistic spiking neuron model
    Kasabov, Nikola
    [J]. NEURAL NETWORKS, 2010, 23 (01) : 16 - 19
  • [10] Hyperparameter Optimization of Evolving Spiking Neural Network for Time-Series Classification
    Tasbiha Ibad
    Said Jadid Abdulkadir
    Norshakirah Aziz
    Mohammed Gamal Ragab
    Qasem Al-Tashi
    [J]. New Generation Computing, 2022, 40 : 377 - 397