Polynomial extension operators for H1, H(curl) and H(div) -: Spaces on a cube

被引:20
|
作者
Costabel, M. [1 ]
Dauge, M. [1 ]
Demkowicz, L. [2 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
trace lifting; polynomial extension; de Rham complex; separation of variables;
D O I
10.1090/S0025-5718-08-02108-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the construction of continuous trace lifting operators compatible with the de Rham complex on the reference hexahedral element (the unit cube). We consider three trace operators: The standard one from H-1, the tangential trace from H(curl) and the normal trace from H(div). For each of them we construct a continuous right inverse by separation of variables. More importantly, we consider the same trace operators acting from the polynomial spaces forming the exact sequence corresponding to the Nedelec hexahedron of the first type of degree p. The core of the paper is the construction of polynomial trace liftings with operator norms bounded independently of the polynomial degree p. This construction relies on a spectral decomposition of the trace data using discrete Dirichlet and Neumann eigenvectors on the unit interval, in combination with a result on interpolation between Sobolev norms in spaces of polynomials.
引用
收藏
页码:1967 / 1999
页数:33
相关论文
共 50 条
  • [1] ROBUST DPG TEST SPACES AND FORTIN OPERATORS---THE H1 AND H(div) CASES
    Fuhrer, Thomas
    Heuer, Norbert
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (02) : 718 - 748
  • [2] H1, H(curl) and H(div) conforming elements on polygon-based prisms and cones
    Chen, Wenbin
    Wang, Yanqiu
    NUMERISCHE MATHEMATIK, 2020, 145 (04) : 973 - 1004
  • [3] Multigrid in H(div) and H(curl)
    Arnold, DN
    Falk, RS
    Winther, R
    NUMERISCHE MATHEMATIK, 2000, 85 (02) : 197 - 217
  • [4] Multigrid in H (div) and H (curl)
    Douglas N. Arnold
    Richard S. Falk
    Ragnar Winther
    Numerische Mathematik, 2000, 85 : 197 - 217
  • [5] Nodal auxiliary space preconditioning in H(curl) and H(div) spaces
    Hiptmair, Ralf
    Xu, Jinchao
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) : 2483 - 2509
  • [6] Interface-penalty finite element methods for interface problems in H1, H(curl), and H(div)
    Liu, Huaqing
    Zhang, Linbo
    Zhang, Xiaodi
    Zheng, Weiying
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 367
  • [7] Wavelet bases in H(div) and H(curl)
    Urban, K
    MATHEMATICS OF COMPUTATION, 2001, 70 (234) : 739 - 766
  • [8] Hierarchical High Order Finite Element Approximation Spaces for H(div) and H(curl)
    De Siqueira, Denise
    Devloo, Philippe R. B.
    Gomes, Sonia M.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 269 - 276
  • [9] HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS
    Falk, Richard S.
    Gatto, Paolo
    Monk, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (01): : 115 - 143
  • [10] H(div) and H(curl)-conforming virtual element methods
    da Veiga, L. Beirao
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    NUMERISCHE MATHEMATIK, 2016, 133 (02) : 303 - 332