Multi-View Least Squares Support Vector Machines Classification

被引:54
|
作者
Houthuys, Lynn [1 ]
Langone, Rocco [1 ]
Suykens, Johan A. K. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT STADIUS, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
基金
欧洲研究理事会;
关键词
Multi-view learning; Classification; LS-SVM;
D O I
10.1016/j.neucom.2017.12.029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multi-view learning, data is described using different representations, or views. Multi-view classification methods try to exploit information from all views to improve the classification performance. Here a new model is proposed that performs classification when two or more views are available. The model is called Multi-View Least Squares Support Vector Machines (MV-LSSVM) Classification and is based on solving a constrained optimization problem. The primal objective includes a coupling term, which minimizes a combination of the errors from all views. The model combines the benefits from both early and late fusion, it is able to incorporate information from all views in the training phase while still allowing for some degree of freedom to model the views differently. Experimental comparisons with similar methods show that using multiple views improves the results with regard to the single view classifiers and that it outperforms other state-of-the-art algorithms in terms of classification accuracy. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 88
页数:11
相关论文
共 50 条