Rigidity of multi-dimensional conformal iterated function systems

被引:5
|
作者
Urbanski, M [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
D O I
10.1088/0951-7715/14/6/310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper starts with an appropriate version of the bounded distortion theorem. We show that for a regular iterated function system of countably many conformal contractions of an open connected subset of a Euclidean space R-d with d greater than or equal to 3, satisfying the 'open set condition', the Radon-Nikodym derivative d mu /dm has a real-analytic extension on an open neighbourhood of the limit set of this system, where m is the conformal measure and mu is the unique probability invariant measure equivalent with tn. Next, within this context we explore the concept of the essential affinity of iterated function systems providing the several necessary and sufficient conditions. We prove the following rigidity result. If d greater than or equal to 3 and h, a topological. conjugacy between two not essentially affine systems F and G sends the conformal measure m(F) to a measure equivalent with the conformal measure m(G), then h has a conformal extension on an open neighbourhood of the limit set of the system F. Finally, in exactly the same way as in Mauldin et al (2001 Compos. Math. to appear) we extend our rigidity result to the case of parabolic systems.
引用
收藏
页码:1593 / 1610
页数:18
相关论文
共 50 条
  • [1] Rigidity of conformal iterated function systems
    Mauldin, RD
    Przytycki, F
    Urbanski, M
    [J]. COMPOSITIO MATHEMATICA, 2001, 129 (03) : 273 - 299
  • [2] Conformal iterated function systems with overlaps
    Deng, Qi-Rong
    Ngai, Sze-Man
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2011, 26 (01): : 103 - 123
  • [3] Remarks on Multi-Dimensional Conformal Mechanics
    Burdik, Cestmir
    Nersessian, Armen
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [4] Diophantine approximation for conformal measures of one-dimensional iterated function systems
    Urbanski, M
    [J]. COMPOSITIO MATHEMATICA, 2005, 141 (04) : 869 - 886
  • [5] Diophantine analysis of conformal iterated function systems
    Urbanski, M
    [J]. MONATSHEFTE FUR MATHEMATIK, 2002, 137 (04): : 325 - 340
  • [6] Diophantine Analysis of Conformal Iterated Function Systems
    Mariusz Urbański
    [J]. Monatshefte für Mathematik, 2002, 137 : 325 - 340
  • [7] Porosity in conformal infinite iterated function systems
    Urbanski, M
    [J]. JOURNAL OF NUMBER THEORY, 2001, 88 (02) : 283 - 312
  • [8] Quantization dimension for conformal iterated function systems
    Lindsay, LJ
    Mauldin, RD
    [J]. NONLINEARITY, 2002, 15 (01) : 189 - 199
  • [9] Separation conditions for conformal iterated function systems
    Ka-Sing Lau
    Sze-Man Ngai
    Xiang-Yang Wang
    [J]. Monatshefte für Mathematik, 2009, 156
  • [10] Separation conditions for conformal iterated function systems
    Lau, Ka-Sing
    Ngai, Sze-Man
    Wang, Xiang-Yang
    [J]. MONATSHEFTE FUR MATHEMATIK, 2009, 156 (04): : 325 - 355