A comparison of classification methods for recognizing single-trial P300 in brain-computer interfaces

被引:0
|
作者
Xiao, Xiaolin [1 ]
Xu, Minpeng [1 ]
Wang, Yijun [3 ]
Jung, Tzyy-Ping [1 ,4 ]
Ming, Dong [1 ,2 ]
机构
[1] Tianjin Univ, Coll Precis Instruments & Optoelect Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Acad Med Engn & Translat Med, Tianjin 300072, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[4] Univ Calif San Diego, Swartz Ctr Computat Neurosci, San Diego, CA 92093 USA
基金
中国国家自然科学基金;
关键词
Brain-computer interface (BCI); single-trial; P300; discriminative canonical pattern matching (DCPM);
D O I
10.1109/embc.2019.8857521
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
P300s are one of the most popular and robust control signals for brain-computer interfaces (BCIs). Fast classifying P300s is vital for the good performance of P300-based BCIs. However, due to noisy background electroencephalography (EEG) environments, current P300-based BCI systems need to collect multiple trials for a reliable output, which is inefficient. This study compared a recently developed algorithm, i.e. discriminative canonical pattern matching (DCPM), with five traditional classification methods, i.e. linear discriminant analysis (LDA), stepwise LDA, Bayesian LDA, shrinkage LDA and spatial-temporal discriminant analysis (STDA), for the detection of single-trial P300s. Eight subjects participated in the classical P300-speller experiments. Study results showed that the DCPM significantly outperformed the other traditional methods in single-trial P300 classification even with small training samples, suggesting the DCPM is a promising classification algorithm for the P300-based BCI.
引用
收藏
页码:3032 / 3035
页数:4
相关论文
共 50 条
  • [1] A comparison of classification methods for recognizing single-trial ERP in RSVP-based brain-computer interfaces
    Xiao, Xiaolin
    Xu, Minpeng
    Ming, Dong
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2019), 2019, : 172 - 175
  • [2] Comparison of Classification Methods for P300 Brain-Computer Interface on Disabled Subjects
    Manyakov, Nikolay V.
    Chumerin, Nikolay
    Combaz, Adrien
    Van Hulle, Andmarc M.
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
  • [3] Brain-computer interfaces -: Communication with the P300
    Kübler, A
    Nijboer, F
    Mellinger, J
    Matuz, T
    Kleber, B
    Eitel-Braitsch, Y
    Sellers, E
    Vaughan, T
    Wolpaw, J
    Birbaumer, N
    [J]. JOURNAL OF PSYCHOPHYSIOLOGY, 2005, 19 (02) : 128 - 128
  • [4] Single-trial stimuli classification from detected P300 for augmented Brain-Computer Interface: A deep learning approach
    Leoni, Jessica
    Strada, Silvia Carla
    Tanelli, Mara
    Brusa, Alessandra
    Proverbio, Alice Mado
    [J]. MACHINE LEARNING WITH APPLICATIONS, 2022, 9
  • [5] COMPARISON OF LINEAR CLASSIFICATION METHODS FOR P300 BRAIN-COMPUTER INTERFACE ON DISABLED SUBJECTS
    Manyakov, Nikolay V.
    Chumerin, Nikolay
    Combaz, Adrien
    Van Hulle, Marc M.
    [J]. BIOSIGNALS 2011, 2011, : 328 - 334
  • [6] Sensor selection for p300 brain-computer interfaces
    Cecotti, Hubert
    Rivet, Bertrand
    Congedo, Marco
    Jutten, Christian
    Bertrand, Olivier
    Maby, Emmanuel
    Mattout, Jeremie
    [J]. TRAITEMENT DU SIGNAL, 2010, 27 (06) : 515 - 539
  • [7] A COMPARISON OF DIFFERENT METHODS FOR ESTIMATING SINGLE-TRIAL P300 LATENCIES
    SMULDERS, FTY
    KENEMANS, JL
    KOK, A
    [J]. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1994, 92 (02): : 107 - 114
  • [8] Comparison of dry and gel based electrodes for P300 brain-computer interfaces
    Guger, Christoph
    Krausz, Gunther
    Allison, Brendan Z.
    Edlinger, Guenter
    [J]. FRONTIERS IN NEUROSCIENCE, 2012, 6
  • [9] 30+years of P300 brain-computer interfaces
    Allison, Brendan Z.
    Kuebler, Andrea
    Jin, Jing
    [J]. PSYCHOPHYSIOLOGY, 2020, 57 (07)
  • [10] A comparison of subject-dependent and subject-independent channel selection strategies for single-trial P300 brain computer interfaces
    Yanina Atum
    Marianela Pacheco
    Rubén Acevedo
    Carolina Tabernig
    José Biurrun Manresa
    [J]. Medical & Biological Engineering & Computing, 2019, 57 : 2705 - 2715