Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space

被引:12
|
作者
Ignat, Liviu I. [2 ,3 ]
Rossi, Julio D. [1 ]
San Antolin, Angel [1 ]
机构
[1] Univ Alicante, Dept Anal Matemat, E-03080 Alicante, Spain
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest 010702, Romania
[3] BCAM, Bilbao 48009, Basque Country, Spain
基金
欧洲研究理事会;
关键词
Nonlocal diffusion; Eigenvalues; EQUATION; PERIDYNAMICS; EVOLUTION; MODEL;
D O I
10.1016/j.jde.2012.03.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u) = - integral(d)(R) (chi, Y)(u(y) - u(chi))dy. Here we consider a kernel K(chi, y) = Psi(y - a(chi)) + (Psi (chi - a(y)) where Psi is a bounded; nonnegative function supported in the unit ball and a means a diffeomorphism on R-d. A simple example being a linear function a(chi) = A chi. The upper and lower bounds that we obtain are given in terms of the Jacobian of a and the integral of Indeed, in the linear case a(chi) = A chi we obtain an explicit expression for the first eigenvalue in the whole R-d and it is positive when the determinant of the matrix A is different from one. As an application of our results, we observe that, when the first eigenvalue is positive, there is an exponential decay for the solutions to the associated evolution problem. As a tool to obtain the result, we also study the behavior of the principal eigenvalue of the nonlocal Dirichlet problem in the ball B-R and prove that it converges to the first eigenvalue in the whole space as R -> infinity. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:6429 / 6447
页数:19
相关论文
共 50 条
  • [1] UPPER AND LOWER BOUNDS IN LINEAR EIGENVALUE PROBLEMS
    MASUR, EF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A682 - A682
  • [2] Upper and lower bounds for the first Dirichlet Eigenvalue of a triangle
    Freitas, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (07) : 2083 - 2089
  • [3] Global Lower Bounds on the First Eigenvalue for a Diffusion Operator
    Liangdi Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3847 - 3862
  • [4] Global Lower Bounds on the First Eigenvalue for a Diffusion Operator
    Zhang, Liangdi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3847 - 3862
  • [5] Lower bounds for the first Dirichlet eigenvalue of the Laplacian for domains in hyperbolic space
    Artamoshin, Sergei
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 160 (02) : 191 - 208
  • [6] Isoperimetric upper bounds for the first eigenvalue
    Santhanam, G.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (03): : 375 - 384
  • [7] Isoperimetric upper bounds for the first eigenvalue
    G SANTHANAM
    Proceedings - Mathematical Sciences, 2012, 122 : 375 - 384
  • [8] Decay estimates for nonlinear nonlocal diffusion problems in the whole space
    L. I. Ignat
    D. Pinasco
    J. D. Rossi
    A. San Antolin
    Journal d'Analyse Mathématique, 2014, 122 : 375 - 401
  • [9] Decay estimates for nonlinear nonlocal diffusion problems in the whole space
    Ignat, L. I.
    Pinasco, D.
    Rossi, J. D.
    San Antolin, A.
    JOURNAL D ANALYSE MATHEMATIQUE, 2014, 122 : 375 - 401
  • [10] On the principal eigenvalue of some nonlocal diffusion problems
    Garcia-Melian, Jorge
    Rossi, Julio D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 21 - 38