An Expandable Hardware Platform for Implementation of CNN-Based Applications

被引:0
|
作者
Javier Martinez-Alvarez, J. [1 ]
Javier Garrigos-Guerrero, F. [1 ]
Javier Toledo-Moreo, F. [1 ]
Manuel Ferrandez-Vicente, J. [1 ]
机构
[1] Univ Politecn Cartagena, Dpto Elect Tecnol Comp & Proyectos, Cartagena 30202, Spain
关键词
CELLULAR NEURAL-NETWORKS; FPGA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a standalone system for real-time processing of video streams using CNNs. The computing platform is easily expandable and customizable for any application. This is achieved by using a modular approach both for the CNN architecture itself and for its hardware implementation. Several FPGA-based processing modules can be cascaded together with a video acquisition stage and an output interface to a framegrabber for video output storage, all sharing a common communication interface. The pre-verified CNN components, the modular architecture, and the expandable hardware platform provide an excellent workbench for fast and confident developing of CNN applications.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [1] An efficient hardware implementation of CNN-based object trackers for real-time applications
    Al-Hussein A. El-Shafie
    Mohamed Zaki
    S. E. D. Habib
    [J]. Neural Computing and Applications, 2022, 34 : 19937 - 19952
  • [2] An efficient hardware implementation of CNN-based object trackers for real-time applications
    El-Shafie, Al-Hussein A.
    Zaki, Mohamed
    Habib, S.E.D.
    [J]. Neural Computing and Applications, 2022, 34 (22): : 19937 - 19952
  • [3] An efficient hardware implementation of CNN-based object trackers for real-time applications
    El-Shafie, Al-Hussein A.
    Zaki, Mohamed
    Habib, S. E. D.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22): : 19937 - 19952
  • [4] Towards an Efficient Hardware Implementation of CNN-Based Object Trackers
    El-Shafie, Al-Hussein A.
    Zaki, Mohamed
    Habib, S. E. D.
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [5] Caffe2C: A Framework for Easy Implementation of CNN-based Mobile Applications
    Tanno, Ryosuke
    Yanai, Keiji
    [J]. ADJUNCT PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING NETWORKING AND SERVICES (MOBIQUITOUS 2016), 2016, : 159 - 164
  • [6] An FPGA Implementation of CNN-based Compression Artifact Reduction
    Kim, Jaemyung
    Kang, Jin-Ku
    Kim, Yongwoo
    [J]. 2022 19TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2022, : 95 - 96
  • [7] Implementation of a CNN-based perceptual framework on a roving robot
    Arena, P.
    De Fiore, S.
    Fortuna, L.
    Lombardo, D.
    Patane, L.
    [J]. PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 1588 - 1591
  • [8] Hardware implementation of CNN
    Veni, S
    Yamuna, B
    [J]. 2005 International Conference on Intelligent Sensing and Information Processing, Proceedings, 2005, : 320 - 325
  • [9] Pulse stream based CNN hardware implementation
    Colodro, F
    Torralba, A
    Carvajal, RG
    Franquelo, LG
    [J]. ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : B211 - B214
  • [10] CNN-Based Assistive Technology Platform for Hearing Impairments Individuals
    Bhama, Ponsy R. K. Sathia
    Keerthana, V. S.
    Swasthi, B.
    Ancheri, Katherine B.
    Jayanthi, P.
    [J]. FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 3, CIS 2023, 2024, 865 : 153 - 163