FUNCTIONAL MODEL SELECTION FOR INSAR TIME SERIES

被引:0
|
作者
Chang, Ling [1 ]
Hanssen, Ramon F. [1 ]
机构
[1] Delft Univ Technol, NL-2600 AA Delft, Netherlands
关键词
Deformation modeling; Multiple hypotheses testing; B-method of testing;
D O I
10.1109/IGARSS.2016.7729876
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
InSAR time series analysis involves the processing of extremely large datasets to estimate the relative movements of points on Earth. The estimated movements may reveal geophysical processes, or strain in anthropogenic structures. In parametric estimation methods, it is important to chose the optimal mathematical functional model relating the satellite observations to the kinematic parameters of interest. A standard approach is to parameterize the kinematic behavior, in first order, as a linear function of time, but it is unlikely that all objects behave in this purely linear way. Ideally, the kinematic parameterization should be optimized for each individual measurement point in the area of interest. In this work, following [1] we introduce a method to select the optimal functional model, with a minimum but sufficient number of free parameters using a probabilistic method based on multiple hypotheses testing.
引用
收藏
页码:3390 / 3393
页数:4
相关论文
共 50 条
  • [1] A noise model for InSAR time series
    Agram, P. S.
    Simons, M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2015, 120 (04) : 2752 - 2771
  • [2] Pair Selection Optimization for InSAR Time Series Processing
    Smittarello, D.
    d'Oreye, N.
    Jaspard, M.
    Derauw, D.
    Samsonov, S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (03)
  • [3] Time series and model selection
    Clark, A. E.
    Troskie, C. G.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (04) : 766 - 771
  • [4] Bandwidth selection for functional time series prediction
    Antoniadis, Anestis
    Paparoditis, Efstathios
    Sapatinas, Theofanis
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (06) : 733 - 740
  • [5] Automated Reference Points Selection for InSAR Time Series Analysis on Segmented Wetlands
    Zhang, Boya
    Hestir, Erin
    Zhang, Yunjun
    Reiter, Matthew E.
    Viers, Joshua H.
    Schaffer-Smith, Danica
    Sesser, Kristin
    Oliver-Cabrera, Talib
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 1
  • [6] On consistency for time series model selection
    William Kengne
    [J]. Statistical Inference for Stochastic Processes, 2023, 26 : 437 - 458
  • [7] On consistency for time series model selection
    Kengne, William
    [J]. STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2023, 26 (02) : 437 - 458
  • [8] Model selection for nonlinear time series
    Manzan S.
    [J]. Empirical Economics, 2004, 29 (4) : 901 - 920
  • [9] ON THE STOCHASTIC MODEL FOR INSAR SINGLE ARC POINT SCATTERER TIME SERIES
    Brouwer, Wietske S.
    Wang, Yuqing
    van Leijen, Freek J.
    Hanssen, Ramon F.
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7902 - 7905
  • [10] Characterizing and estimating noise in InSAR and InSAR time series with MODIS
    Barnhart, William D.
    Lohman, Rowena B.
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2013, 14 (10) : 4121 - 4132