Advanced Exergoeconomic Analysis of a Power Plant with CO2 Capture

被引:19
|
作者
Petrakopoulou, Fontina [1 ,2 ]
Tsatsaronis, George [1 ]
Morosuk, Tatiana [1 ]
机构
[1] Tech Univ Berlin, D-10587 Berlin, Germany
[2] Natl Tech Univ Athens, GR-15773 Athens, Greece
关键词
Cost optimization; advanced exergoeconomic analysis; oxy-fuel combustion; combined-cycle power plant; CO2; capture; ADVANCED EXERGETIC ANALYSIS; COSTS;
D O I
10.1016/j.egypro.2015.07.408
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Conventional exergy-based analyses reveal options for improving energy conversion systems, but they suffer from some limitations that are addressed by advanced exergy-based analyses. Advanced exergy-based methods are capable of (1) identifying interdependencies among plant components (endogenous/exogenous values), and (2) revealing the potential for improvement (avoidable/unavoidable values). Thus, data obtained from these methods pinpoint strengths and weaknesses of energy conversion systems and are of great importance when complex plants with a large number of interconnected components are considered. This paper presents one of the first applications of an advanced exergoeconomic analysis to a complex power plant. The plant includes a mixed conducting membrane for oxy-fuel combustion and CO2 capture. The results show that for the most influential components of the plant, the largest part of investment cost and of the costs of exergy destruction is unavoidable. Additionally, in most cases the interactions among the components are of lower importance and, for the majority of the components, the endogenous parts of the costs (related to the internal operation of each component) are significantly larger than the corresponding exogenous parts (related to component interactions). Nevertheless, relatively strong interactions have been found among the components that constitute the mixed conducting membrane reactor of the plant. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:2253 / 2260
页数:8
相关论文
共 50 条
  • [1] COST REDUCTION STRATEGIES FOR AN OXY-FUEL POWER PLANT WITH CO2 CAPTURE: APPLICATION OF AN ADVANCED EXERGOECONOMIC ANALYSIS TO AN ADVANCED ZERO EMISSION PLANT
    Petrakopoulou, F.
    Tsatsaronis, G.
    Morosuk, T.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B, 2012, : 1063 - 1073
  • [2] Assessment of a Power Plant With CO2 Capture Using an Advanced Exergoenvironmental Analysis
    Petrakopoulou, Fontina
    Tsatsaronis, George
    Morosuk, Tatiana
    [J]. JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2014, 136 (02):
  • [3] Conventional Exergetic and Exergoeconomic Analyses of a Power Plant with Chemical Looping Combustion for CO2 Capture
    Petrakopoulou, Fontina
    Tsatsaronis, George
    Morosuk, Tatiana
    [J]. INTERNATIONAL JOURNAL OF THERMODYNAMICS, 2010, 13 (03) : 77 - 86
  • [4] Exergoeconomic and exergoenvironmental evaluation of power plants including CO2 capture
    Petrakopoulou, Fontina
    Tsatsaronis, George
    Boyano, Alicia
    Morosuk, Tatiana
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2011, 89 (09): : 1461 - 1469
  • [5] CO2 Capture in a Chemical Looping Combustion Power Plant Evaluated With an Advanced Exergetic Analysis
    Petrakopoulou, Fontina
    Tsatsaronis, George
    Morosuk, Tatiana
    [J]. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2014, 33 (03) : 1017 - 1025
  • [6] Exergoeconomic Analysis of Post-Combustion CO2 Capture Processes
    Schach, M. -O.
    Schneider, R.
    Schramm, H.
    Repke, J. -U.
    [J]. 20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 997 - 1002
  • [7] Exergoeconomic analysis applied to supercritical CO2 power systems
    Noaman, Mohamed
    Saade, George
    Morosuk, Tatiana
    Tsatsaronis, George
    [J]. ENERGY, 2019, 183 : 756 - 765
  • [8] HYBRID POWER GENERATION PLANT FOR CO2 CAPTURE
    Deng, Shimin
    Hynes, Rory
    Drover, Brian
    [J]. PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 4, 2012, : 763 - 770
  • [9] THE CAPTURE AND SEQUESTRATION OF POWER-PLANT CO2
    HERZOG, HJ
    DRAKE, EM
    TESTER, JW
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 204 : 16 - FUEL
  • [10] Hybrid Power Generation Plant for CO2 Capture
    Deng, Shimin
    Hynes, Rory
    Drover, Brian
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2014, 136 (05):