Thermal-electric model for piezoelectric ZnO nanowires

被引:28
|
作者
Araneo, Rodolfo [1 ]
Bini, Fabiano [2 ]
Rinaldi, Antonio [4 ,5 ]
Notargiacomo, Andrea [3 ]
Pea, Marialilia [3 ]
Celozzi, Salvatore [1 ]
机构
[1] Univ Roma La Sapienza, DIAEE, Elect Engn Div, Via Eudossiana 18, I-00184 Rome, Italy
[2] Univ Roma La Sapienza, DIMA, Dept Mech & Aerosp Engn, I-00184 Rome, Italy
[3] CNR, Inst Photon & Nanotechnol, I-00156 Rome, Italy
[4] Univ Aquila, Int Res Ctr Math & Mech Complex Syst, I-04012 Cisterna Latina, LT, Italy
[5] ENEA, Res Ctr Casaccia, I-00123 Rome, Italy
关键词
ZnO nanowires; Schottky contacts; Kapitza resistance; pyroelectric effect; piezotronic effect; ZINC-OXIDE; SEMICONDUCTOR NANOWIRES; NANODEVICES; DEVICES; ENERGY; NANOGENERATORS; TRANSPORT; ARRAYS; SENSOR; CONDUCTIVITY;
D O I
10.1088/0957-4484/26/26/265402
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The behavior of ZnO nanowires under uniaxial loading is characterized by means of a numerical model that accounts for all coupled mechanical, electrical, and thermal effects. The paper shows that thermal effects in the nanowires may greatly impact the predicted performance of piezoelectric and piezotronic nanodevices. The pyroelectric effect introduces new equivalent volumic charge in the body of the nanowire and surface charges at the boundaries, where Kapitza resistances are located, that act together with the piezoelectric charges to improve the predicted performance. It is shown that the proposed model is able to reproduce several effects experimentally observed by other research groups, and is a promising tool for the design of ultrahigh efficient nanodevices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A simplified transformer thermal model based on thermal-electric analogy
    Tang, WH
    Wu, QH
    Richardson, ZJ
    IEEE TRANSACTIONS ON POWER DELIVERY, 2004, 19 (03) : 1112 - 1119
  • [2] Nonlinear Effects in Piezoelectric Transformers Explained by Thermal-Electric Model Based on a Hypothesis of Self-Heating
    Andersen, T.
    Andersen, M. A. E.
    Thomsen, O. C.
    Foster, M. P.
    Stone, D. A.
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 596 - 601
  • [3] Simplified thermal-electric dynamic model for HID lamps
    Osorio, R
    Ponce, M
    Oliver, MA
    PESC 04: 2004 IEEE 35TH ANNUAL POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-6, CONFERENCE PROCEEDINGS, 2004, : 2713 - 2718
  • [4] Validation of a Thermal-Electric Li-Ion Battery Model
    Peck, Scott
    Olszanski, Theodore
    Zanardelli, Sonya
    Pierce, Matt
    SAE INTERNATIONAL JOURNAL OF PASSENGER CARS-ELECTRONIC AND ELECTRICAL SYSTEMS, 2012, 5 (01): : 154 - 163
  • [5] A New Photovoltaic-Thermal Hybrid Module: Thermal-Electric Model and Experimental Tests
    D'Angola, A.
    Zaffina, R.
    Enescu, D.
    Fracastoro, G.
    Spertino, F.
    2014 49TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2014,
  • [6] Thermal-Electric Simulink® Model of Diesel Electric Generators with Economic Dispatch in Remote Standalone Systems
    Wies, R. W.
    Brouhard, L. G.
    Johnson, R. A.
    Lin, C-S.
    2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 4679 - 4688
  • [7] Superfast moving thermal-electric domains in metals
    1600, Izdatelstvo Naukova Dumka, Kharkov, Ukraine (20):
  • [8] HYBRID COOLING FOR THERMAL-ELECTRIC POWER GENERATION
    Maulbetsch, John S.
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE - 2013, VOL 3, 2014,
  • [9] SUPERFAST MOVING THERMAL-ELECTRIC DOMAINS IN METALS
    KADIGROBOV, AM
    SLUTSKIN, AA
    FIZIKA NIZKIKH TEMPERATUR, 1994, 20 (03): : 283 - 285
  • [10] New directions in thermoelectric and thermal-electric cooling
    Gunawan, Andrey
    Rajan, Aravindh
    Rodin, David M.
    Creamer, Patrick
    Yee, Shannon K.
    OPTICAL AND ELECTRONIC COOLING OF SOLIDS II, 2017, 10121