Detection of waterborne bacteria using Adaptive Neuro-Fuzzy Inference System

被引:0
|
作者
Khan, Farhan Mohammad [1 ]
Sridhar, Smriti [2 ]
Gupta, Rajiv [1 ]
机构
[1] BITS Pilani, Dept Civil Engn, Pilani Campus, Pilani, Rajasthan, India
[2] Univ Virginia, Dept Syst Engn, Charlottesville, VA 22903 USA
关键词
D O I
10.1051/e3sconf/202015805002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The detection of waterborne bacteria is crucial to prevent health risks. Current research uses soft computing techniques based on Artificial Neural Networks (ANN) for the detection of bacterial pollution in water. The limitation of only relying on sensor-based water quality analysis for detection can be prone to human errors. Hence, there is a need to automate the process of real-time bacterial monitoring for minimizing the error, as mentioned above. To address this issue, we implement an automated process of water-borne bacterial detection using a hybrid technique called Adaptive Neuro-fuzzy Inference System (ANFIS), that integrates the advantage of learning in an ANN and a set of fuzzy if-then rules with appropriate membership functions. The experimental data as the input to the ANFIS model is obtained from the open-sourced dataset of government of India data platform, having 1992 experimental laboratory results from the years 2003-2014. We have included the following water quality parameters: Temperature, Dissolved Oxygen (DO), pH, Electrical conductivity, Biochemical oxygen demand (BOD) as the significant factors in the detection and existence of bacteria. The membership function changes automatically with every iteration during training of the system. The goal of the study is to compare the results obtained from the three membership functions of ANFIS-Triangle, Trapezoidal, and Bell-shaped with 35 = 243 fuzzy set rules. The results show that ANFIS with generalized bell-shaped membership function is best with its average error 0.00619 at epoch 100.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Study on Sulfate Reducing Bacteria Detection Using Adaptive Neuro-Fuzzy Inference System
    Chandaran, U. D.
    Halim, Abdul Z.
    Sian, L. K.
    2012 IEEE INTERNATIONAL CONFERENCE ON CIRCUITS AND SYSTEMS (ICCAS), 2012, : 59 - 64
  • [2] Glaucoma detection using adaptive neuro-fuzzy inference system
    Huang, Mei-Ling
    Chen, Hsin-Yi
    Huang, Jian-Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2007, 32 (02) : 458 - 468
  • [3] Fall detection using adaptive neuro-fuzzy inference system
    Abdali-Mohammadi F.
    Rashidpour M.
    Fathi A.
    International Journal of Multimedia and Ubiquitous Engineering, 2016, 11 (04): : 91 - 106
  • [4] Edge Detection by Adaptive Neuro-Fuzzy Inference System
    Zhang, Lei
    Xiao, Mei
    Ma, Jian
    Song, Hongxun
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1774 - 1777
  • [5] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [6] An adaptive neuro-fuzzy inference system for sleep spindle detection
    Liang, Sheng-Fu
    Kuo, Chih-En
    Hu, Yu-Han
    Chen, Chun-Yu
    Li, Yu-Hung
    2012 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY2012), 2012, : 369 - 373
  • [7] Noise cancellation by using Adaptive Neuro-Fuzzy Inference System
    Zhang, Bao-cheng
    Xu, Xie-xian
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2000, 4 (04): : 62 - 67
  • [8] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    Computational Geosciences, 2008, 12 : 513 - 523
  • [9] Illuminant Estimation Using Adaptive Neuro-Fuzzy Inference System
    Luo, Yunhui
    Wang, Xingguang
    Wang, Qing
    Chen, Yehong
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [10] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Yegireddi, Satyanarayana
    Kumar, Arvind
    COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) : 513 - 523