GN-SCCA: GraphNet Based Sparse Canonical Correlation Analysis for Brain Imaging Genetics

被引:14
|
作者
Du, Lei [1 ]
Yan, Jingwen [1 ]
Kim, Sungeun [1 ]
Risacher, Shannon L. [1 ]
Huang, Heng [2 ]
Inlow, Mark [3 ]
Moore, Jason H. [4 ]
Saykin, Andrew J. [1 ]
Shen, Li [1 ]
机构
[1] Indiana Univ Sch Med, Radiol & Imaging Sci, Indianapolis, IN 46202 USA
[2] Univ Texas Arlington, Comp Sci & Engn, Arlington, TX 76019 USA
[3] Rose Hulman Inst Technol, Math, Terre Haute, IN 47803 USA
[4] Univ Penn, Sch Med, Biomed Informat, Philadelphia, PA 19104 USA
来源
关键词
VARIABLE SELECTION; PHENOTYPES; MCI; AD;
D O I
10.1007/978-3-319-23344-4_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying associations between genetic variants and neuroimaging quantitative traits (QTs) is a popular research topic in brain imaging genetics. Sparse canonical correlation analysis (SCCA) has been widely used to reveal complex multi-SNP-multi-QT associations. Several SCCA methods explicitly incorporate prior knowledge into the model and intend to uncover the hidden structure informed by the prior knowledge. We propose a novel structured SCCA method using Graph constrained Elastic-Net (GraphNet) regularizer to not only discover important associations, but also induce smoothness between coefficients that are adjacent in the graph. In addition, the proposed method incorporates the covariance structure information usually ignored by most SCCA methods. Experiments on simulated and real imaging genetic data show that, the proposed method not only outperforms a widely used SCCA method but also yields an easy-to-interpret biological findings.
引用
收藏
页码:275 / 284
页数:10
相关论文
共 50 条
  • [1] Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method
    Du, Lei
    Huang, Heng
    Yan, Jingwen
    Kim, Sungeun
    Risacher, Shannon L.
    Inlow, Mark
    Moore, Jason H.
    Saykin, Andrew J.
    Shen, Li
    BIOINFORMATICS, 2016, 32 (10) : 1544 - 1551
  • [2] IMAGING GENETICS VIA SPARSE CANONICAL CORRELATION ANALYSIS
    Chi, Eric C.
    Allen, Genevera I.
    Zhou, Hua
    Kohannim, Omid
    Lange, Kenneth
    Thompson, Paul M.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 740 - 743
  • [3] Multi-task learning based structured sparse canonical correlation analysis for brain imaging genetics
    Kim, Mansu
    Min, Eun Jeong
    Liu, Kefei
    Yan, Jingwen
    Saykin, Andrew J.
    Moore, Jason H.
    Long, Qi
    Shen, Li
    MEDICAL IMAGE ANALYSIS, 2022, 76
  • [4] DEEP SELF-RECONSTRUCTION SPARSE CANONICAL CORRELATION ANALYSIS FOR BRAIN IMAGING GENETICS
    Wang, Meiling
    Shao, Wei
    Huang, Shuo
    Zhang, Daoqiang
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1790 - 1793
  • [5] The group sparse canonical correlation analysis method in the imaging genetics research
    Wu, Jie
    Xu, Jiawei
    Chen, Wei
    Sun, Deyan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2554 - 2557
  • [6] DIAGNOSIS STATUS GUIDED BRAIN IMAGING GENETICS VIA INTEGRATED REGRESSION AND SPARSE CANONICAL CORRELATION ANALYSIS
    Du, Lei
    Liu, Kefei
    Yao, Xiaohui
    Risacher, Shannon L.
    Guo, Lei
    Saykin, Andrew J.
    Shen, Li
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 356 - 359
  • [7] Joint sparse canonical correlation analysis for detecting differential imaging genetics modules
    Fang, Jian
    Lin, Dongdong
    Schulz, S. Charles
    Xu, Zongben
    Calhoun, Vince D.
    Wang, Yu-Ping
    BIOINFORMATICS, 2016, 32 (22) : 3480 - 3488
  • [8] Sparse Canonical Correlation Analysis via Truncated l1-norm with Application to Brain Imaging Genetics
    Du, Lei
    Zhang, Tuo
    Liu, Kefei
    Yao, Xiaohui
    Yan, Jingwen
    Risacher, Shannon L.
    Guo, Lei
    Saykin, Andrew J.
    Shen, Li
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 707 - 711
  • [9] Multi-Task Sparse Canonical Correlation Analysis with Application to Multi-Modal Brain Imaging Genetics
    Du, Lei
    Liu, Kefei
    Yao, Xiaohui
    Risacher, Shannon L.
    Han, Junwei
    Saykin, Andrew J.
    Guo, Lei
    Shen, Li
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (01) : 227 - 239
  • [10] inMTSCCA: An Integrated Multi-task Sparse Canonical Correlation Analysis for Multi-omic Brain Imaging Genetics
    Du, Lei
    Zhang, Jin
    Zhao, Ying
    Shang, Muheng
    Guo, Lei
    Han, Junwei
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (02) : 396 - 413