A RANDOMIZED MAXIMUM A POSTERIORI METHOD FOR POSTERIOR SAMPLING OF HIGH DIMENSIONAL NONLINEAR BAYESIAN INVERSE PROBLEMS

被引:31
|
作者
Wang, Kainan [1 ,2 ]
Tan Bui-Thanh [3 ,4 ]
Ghattas, Omar [5 ,6 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Sanchez Oil & Gas Corp, Houston, TX 77002 USA
[3] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
[4] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[5] Univ Texas Austin, Jackson Sch Geosci, Inst Computat Engn & Sci, Austin, TX 78712 USA
[6] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2018年 / 40卷 / 01期
关键词
randomized maximum a posteriori; inverse problems; uncertainty quantification; Markov chain Monte Carlo; trust region inexact Newton conjugate gradient; STOCHASTIC NEWTON MCMC; MONTE-CARLO; ALGORITHMS; LANGEVIN; INTERIOR; FLOW;
D O I
10.1137/16M1060625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a randomized maximum a posteriori (rMAP) method for generating approximate samples of posteriors in high dimensional Bayesian inverse problems governed by large-scale forward problems. We derive the rMAP approach by (1) casting the problem of computing the MAP point as a stochastic optimization problem; (2) interchanging optimization and expectation; and (3) approximating the expectation with a Monte Carlo method. For a specific randomized data and prior mean, rMAP reduces to the randomized maximum likelihood (RML) approach. It can also be viewed as an iterative stochastic Newton method. An analysis of the convergence of the rMAP samples is carried out for both linear and nonlinear inverse problems. Each rMAP sample requires solution of a PDE-constrained optimization problem; to solve these problems, we employ a state-of-the-art trust region inexact Newton conjugate gradient method with sensitivity-based warm starts. An approximate Metropolization approach is presented to reduce the bias in rMAP samples. Various numerical methods will be presented to demonstrate the potential of the rMAP approach in posterior sampling of nonlinear Bayesian inverse problems in high dimensions.
引用
收藏
页码:A142 / A171
页数:30
相关论文
共 50 条
  • [1] Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems
    Helin, T.
    Burger, M.
    INVERSE PROBLEMS, 2015, 31 (08)
  • [2] RANDOMIZE-THEN-OPTIMIZE: A METHOD FOR SAMPLING FROM POSTERIOR DISTRIBUTIONS IN NONLINEAR INVERSE PROBLEMS
    Bardsley, Johnathan M.
    Solonen, Antti
    Haario, Heikki
    Laine, Marko
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04): : A1895 - A1910
  • [3] An Order-Theoretic Perspective on Modes and Maximum A Posteriori Estimation in Bayesian Inverse Problems
    Lambley, Hefin
    Sullivan, T. J.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (04): : 1195 - 1224
  • [4] Wavelet-Based Priors Accelerate Maximum-a-Posteriori Optimization in Bayesian Inverse Problems
    Wacker, Philipp
    Knabner, Peter
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2020, 22 (03) : 853 - 879
  • [5] Wavelet-Based Priors Accelerate Maximum-a-Posteriori Optimization in Bayesian Inverse Problems
    Philipp Wacker
    Peter Knabner
    Methodology and Computing in Applied Probability, 2020, 22 : 853 - 879
  • [6] Maximum a posteriori Bayesian estimation of epirubicin clearance by limited sampling
    Ralph, LD
    Thomson, AH
    Dobbs, NA
    Twelves, C
    BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2004, 57 (06) : 764 - 772
  • [7] Fast Bayesian inversion for high dimensional inverse problems
    Kugler, Benoit
    Forbes, Florence
    Doute, Sylvain
    STATISTICS AND COMPUTING, 2022, 32 (02)
  • [8] Fast Bayesian inversion for high dimensional inverse problems
    Benoit Kugler
    Florence Forbes
    Sylvain Douté
    Statistics and Computing, 2022, 32
  • [9] Randomized maximum likelihood based posterior sampling
    Ba, Yuming
    de Wiljes, Jana
    Oliver, Dean S.
    Reich, Sebastian
    COMPUTATIONAL GEOSCIENCES, 2022, 26 (01) : 217 - 239
  • [10] Randomized maximum likelihood based posterior sampling
    Yuming Ba
    Jana de Wiljes
    Dean S. Oliver
    Sebastian Reich
    Computational Geosciences, 2022, 26 : 217 - 239