A Representation Theorem for the Group of Autoprojectivities of an Abelian p-Group of Finite Exponent

被引:4
|
作者
Costantini, M. [1 ]
Holmes, C. S. [2 ]
Zacher, G. [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
[2] Miami Univ, Dept Math & Stat, Oxford, OH 45056 USA
关键词
Representation Theorem; Finite Exponent;
D O I
10.1007/BF01783678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given the abelian p-group M = < a >circle plus < b >circle plus C, where vertical bar a vertical bar = P-n >= vertical bar b vertical bar = P-m > exp C = = p(s) > 1, set R(M) = {phi is an element of P(M)vertical bar H-phi = H, phi vertical bar Omega(s) (M) = 1}. Our main result is the existence of a well determined isomorphism of R(M) onto a well defined subgroup of Pi(n-m)(k=0) PR(p(n-k-m) Rn-k) x PR(pR(m)).
引用
收藏
页码:119 / 140
页数:22
相关论文
共 50 条
  • [1] On the structure of the group of autoprojectivities of a locally finite modular p-group of finite exponent
    Costantini, M
    Zacher, G
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (1-2) : 113 - 128
  • [2] A representation theorem for the group of autoprojectivities of an abelianp-group of finite exponent
    M. Costantini
    C. S. Holmes
    G. Zacher
    [J]. Annali di Matematica Pura ed Applicata, 1998, 175 : 119 - 140
  • [3] On the upper exponent of a finite p-group
    Wilkens, B
    [J]. JOURNAL OF ALGEBRA, 2004, 277 (01) : 349 - 363
  • [4] Finite P-Group with Small Abelian Subgroups
    Mao, Yuemei
    Li, Qianlu
    [J]. JOURNAL OF MATHEMATICS, 2013, 2013
  • [5] COMPUTING A BASIS FOR A FINITE ABELIAN P-GROUP
    BEYNON, WM
    ILIOPOULOS, CS
    [J]. INFORMATION PROCESSING LETTERS, 1985, 20 (03) : 161 - 163
  • [6] AUTOMORPHISM GROUP OF AN ABELIAN P-GROUP
    HAUSEN, J
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A97 - A97
  • [7] A bound for the exponent of the Schur multiplier of a finite p-group
    Gonzalez-Sanchez, Jon
    Nicolas, Alejandro P.
    [J]. JOURNAL OF ALGEBRA, 2010, 324 (09) : 2564 - 2567
  • [8] Bounding the exponent of the commutator subgroup of a finite p-group
    Komma, P.
    Thomas, V. Z.
    [J]. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024,
  • [9] UNITS IN THE MODULAR GROUP-ALGEBRA OF A FINITE ABELIAN P-GROUP
    SANDLING, R
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 33 (03) : 337 - 346
  • [10] THE AUTOMORPHISM GROUP OF A FINITE MINIMAL NON-ABELIAN p-GROUP
    Fouladi, S.
    Orfi, R.
    [J]. MATHEMATICAL REPORTS, 2014, 16 (01): : 133 - 139