Conduction heat transfer with nonzero initial conditions using the Boundary Element Method in the frequency domain

被引:0
|
作者
Simoes, N. [1 ]
Tadeu, A. [1 ]
Mansur, W. [2 ]
机构
[1] Univ Coimbra, Dept Civil Engn, Coimbra, Portugal
[2] Univ Fed Rio de Janeiro, COPPE, Dept Civil Engn, Rio De Janeiro, Brazil
关键词
transient heat transfer; conduction; Boundary Element Method; 2.5D Green's functions; frequency domain; Fourier transform; nonzero initial conditions;
D O I
10.2495/BE06015
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The diffusion equation with non-zero initial condition is solved using the Boundary Element Method in the frequency domain. Complex frequencies are used in order to avoid aliasing phenomena and to allow the computation of the steady state response. One numerical example is given to illustrate the effectiveness of the proposed approach to solve diffusion equations in two dimensions.
引用
收藏
页码:143 / +
页数:4
相关论文
共 50 条
  • [1] Transient heat conduction under nonzero initial conditions: A solution using the boundary element method in the frequency domain
    Simoes, N.
    Tadeu, A.
    Antonio, J.
    Mansur, W.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (04) : 562 - 567
  • [2] Solving a Two-Dimensional Nonlinear Heat Conduction Equation with Nonzero Boundary Conditions by the Boundary Element Method
    Spevak, L. F.
    Nefedova, O. A.
    MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2017), 2017, 1915
  • [3] The boundary element method for the determination of nonlinear boundary conditions in heat conduction
    Lesnic, D.
    Onyango, T. T. M.
    Ingham, D. B.
    MESH REDUCTION METHODS: BEM/MRM XXXI, 2009, 49 : 45 - +
  • [4] Radial integration boundary element method for heat conduction problems with convective heat transfer boundary
    Wang, Jing
    Peng, Hai-Feng
    Yang, Kai
    Yin, Yan-Xin
    Gao, Xiao-Wei
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2017, 72 (04) : 300 - 310
  • [5] A time domain Galerkin boundary element method for a heat conduction interface problem
    Vodicka, R.
    MESH REDUCTION METHODS: BEM/MRM XXXI, 2009, 49 : 187 - 198
  • [6] Reconstruction of boundary condition laws in heat conduction using the boundary element method
    Onyango, T. T. M.
    Ingham, D. B.
    Lesnic, D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (01) : 153 - 168
  • [7] A boundary element method using DRM for nonlinear heat conduction problems
    Tanaka, M
    Matsumoto, T
    Suda, Y
    BOUNDARY ELEMENTS XXIV: INCORPORATING MESHLESS SOLUTIONS, 2002, 13 : 353 - 362
  • [8] Reconstruction of heat transfer coefficients using the boundary element method
    Onyango, T. T. M.
    Ingham, D. B.
    Lesnic, D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (01) : 114 - 126
  • [9] ON FICTITIOUS DOMAIN METHOD FOR THE NUMERICAL SOLUTION TO HEAT CONDUCTION EQUATION WITH DERIVATIVE BOUNDARY CONDITIONS
    孙志忠
    Journal of Southeast University(English Edition), 1993, (02) : 38 - 44
  • [10] Boundary element method for the inverse problem of heat conduction
    Xin, Yumei
    Zang, Shusheng
    Zheng, Hongtao
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 1997, 29 (03): : 26 - 28