A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues

被引:0
|
作者
Malyshev, AN [1 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
关键词
Mathematics Subject Classification (1991):65F15, 65F35;
D O I
10.1007/s002110050458
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the 2-norm distance from an n x n matrix A to the matrices that have a multiple eigenvalue lambda is equal to [GRAPHICS] where the singular values ar, are ordered nonincreasingly. Therefore, the 2-norm distance from A to the set of matrices with multiple eigenvalues is [GRAPHICS] Mathematics Subject Classification (1991): 65F15, 65F35.
引用
收藏
页码:443 / 454
页数:12
相关论文
共 50 条
  • [1] A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues
    Alexander N. Malyshev
    Numerische Mathematik, 1999, 83 : 443 - 454
  • [2] On the 2-norm distance from a normal matrix to the set of matrices with a multiple zero eigenvalue
    Ikramov Kh.D.
    Nazari A.M.
    Journal of Mathematical Sciences, 2006, 137 (3) : 4789 - 4793
  • [3] ON BEST APPROXIMATIONS OF POLYNOMIALS IN MATRICES IN THE MATRIX 2-NORM
    Liesen, Joerg
    Tichy, Petr
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) : 853 - 863
  • [4] Distance Evaluation to the Set of Matrices with Multiple Eigenvalues
    Kalinina, Elizaveta
    Uteshev, Alexei
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2022), 2022, 13366 : 206 - 224
  • [5] THE 2-NORM OF RANDOM MATRICES
    HANSEN, PC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 23 (01) : 117 - 120
  • [6] Growth in Gaussian elimination, orthogonal matrices, and the 2-norm
    Barlow, JL
    Zha, HY
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (03) : 807 - 815
  • [7] A best upper bound for the 2-norm condition number of a matrix
    Merikoski, JK
    Urpala, U
    Virtanen, A
    Tam, TY
    Uhlig, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 254 : 355 - 365
  • [8] The research on the GC property for RNNs with limited matrix 2-norm
    Qiao, Chen
    Zhang, Rui
    Yao, Jing
    Kong, Xiangliang
    Zhou, Changsheng
    2013 FOURTH GLOBAL CONGRESS ON INTELLIGENT SYSTEMS (GCIS), 2013, : 82 - 86
  • [9] A Walk from 2-Norm SVM to 1-Norm SVM
    Kujala, Jussi
    Aho, Timo
    Elomaa, Tapio
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 836 - 841
  • [10] Distance bounds for prescribed multiple eigenvalues of matrix polynomials
    Psarrakos, Panayiotis J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (11) : 4107 - 4119