Semi-supervised Anomaly Detection with an Application to Water Analytics

被引:52
|
作者
Vercruyssen, Vincent [1 ]
Meert, Wannes [1 ]
Verbruggen, Gust [1 ]
Maes, Koen [2 ]
Baumer, Ruben [2 ]
Davis, Jesse [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Leuven, Belgium
[2] Colruyt Grp, Halle, Belgium
关键词
anomaly detection; time series; water analytics; semi-supervised machine learning; OUTLIER DETECTION;
D O I
10.1109/ICDM.2018.00068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, all aspects of a production process are continuously monitored and visualized in a dashboard. Equipment is monitored using a variety of sensors, natural resource usage is tracked, and interventions are recorded. In this context, a common task is to identify anomalous behavior from the time series data generated by sensors. As manually analyzing such data is laborious and expensive, automated approaches have the potential to be much more efficient as well as cost effective. While anomaly detection could be posed as a supervised learning problem, typically this is not possible as few or no labeled examples of anomalous behavior are available and it is oftentimes infeasible or undesirable to collect them. Therefore, unsupervised approaches are commonly employed which typically identify anomalies as deviations from normal (i.e., common or frequent) behavior. However, in many real-world settings several types of normal behavior exist that occur less frequently than some anomalous behaviors. In this paper, we propose a novel constrained-clustering-based approach for anomaly detection that works in both an unsupervised and semi-supervised setting. Starting from an unlabeled data set, the approach is able to gradually incorporate expert-provided feedback to improve its performance. We evaluated our approach on real-world water monitoring time series data from supermarkets in collaboration with the Colruyt Group, one of Belgium's largest retail companies. Empirically, we found that our approach outperforms the current detection system as well as several other baselines. Our system is currently deployed and used by the company to analyze water usage for 20 stores on a daily basis.
引用
收藏
页码:527 / 536
页数:10
相关论文
共 50 条
  • [1] Semi-supervised Anomaly Detection with Reinforcement Learning
    Lee, Changheon
    Kim, JoonKyu
    Kang, Suk-Ju
    [J]. 2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 933 - 936
  • [2] Semi-Supervised Anomaly Detection with Contrastive Regularization
    Jezequel, Loic
    Vu, Ngoc-Son
    Beaudet, Jean
    Histace, Aymeric
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2664 - 2671
  • [3] Semi-supervised Anomaly Detection on Attributed Graphs
    Kumagai, Atsutoshi
    Iwata, Tomoharu
    Fujiwara, Yasuhiro
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [4] An Efficient Semi-Supervised SVM for Anomaly Detection
    Kim, Junae
    Montague, Paul
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2843 - 2850
  • [5] Semi-Supervised Isolation Forest for Anomaly Detection
    Stradiotti, Luca
    Perini, Lorenzo
    Davis, Jesse
    [J]. PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 670 - 678
  • [6] Network anomaly detection based on semi-supervised clustering
    Wei Xiaotao
    Huang Houkuan
    Tian Shengfeng
    [J]. NEW ADVANCES IN SIMULATION, MODELLING AND OPTIMIZATION (SMO '07), 2007, : 440 - +
  • [7] Semi-Supervised Statistical Approach for Network Anomaly Detection
    Aissa, Naila Belhadj
    Guerroumia, Mohamed
    [J]. 7TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2016) / THE 6TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2016) / AFFILIATED WORKSHOPS, 2016, 83 : 1090 - 1095
  • [8] Anomaly and Novelty detection for robust semi-supervised learning
    Cappozzo, Andrea
    Greselin, Francesca
    Murphy, Thomas Brendan
    [J]. STATISTICS AND COMPUTING, 2020, 30 (05) : 1545 - 1571
  • [9] LEARNING DISCRIMINATIVE FEATURES FOR SEMI-SUPERVISED ANOMALY DETECTION
    Feng, Zhe
    Tang, Jie
    Dou, Yishun
    Wu, Gangshan
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2935 - 2939
  • [10] A SEMI-SUPERVISED MODEL FOR NETWORK TRAFFIC ANOMALY DETECTION
    Nguyen Ha Duong
    Hoang Dang Hai
    [J]. 2015 17TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2015, : 70 - 75