αS from Fπ and renormalization group optimized perturbation theory

被引:35
|
作者
Kneur, Jean-Loic [1 ,2 ]
Neveu, Andre [1 ,2 ]
机构
[1] CNRS, Lab Charles Coulomb, UMR 5221, F-34095 Montpellier, France
[2] Univ Montpellier 2, Lab Charles Coulomb, UMR 5221, F-34095 Montpellier, France
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 07期
关键词
CONNECTED VACUUM AMPLITUDE; GROSS-NEVEU MODEL; DELTA-EXPANSION; QUARK MASS; ANHARMONIC-OSCILLATOR; SYMMETRY-BREAKING; CONVERGENT SEQUENCES; ANOMALOUS DIMENSION; 3-LOOP RELATION; GAUGE-THEORIES;
D O I
10.1103/PhysRevD.88.074025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A variant of variationally optimized perturbation, incorporating renormalization group properties in a straightforward way, uniquely fixes the variational mass interpolation in terms of the anomalous mass dimension. It is used at three successive orders to calculate the nonperturbative ratio F pi/(Lambda) over bar of the pion decay constant and the basic QCD scale in the (MS) over bar scheme. We demonstrate the good stability and ( empirical) convergence properties of this modified perturbative series for this quantity, and provide simple and generic cures to previous problems of the method, principally the generally nonunique and nonreal optimal solutions beyond lowest order. Using the experimental F-pi input value we determine (Lambda) over bar (n)f=2 similar or equal to 359(-25)(+38) +/- 5 MeV and (Lambda) over bar (n)f=3 317(-14) (-7) +/- 13 MeV, where the first quoted errors are our estimate of theoretical uncertainties of the method, which we consider conservative. The second uncertainties come from the present uncertainties in F pi = F and F pi / F0, where F (F0) is F pi in the exact chiral SU(2) (SU(3) limits. Combining the (Lambda) over bar (n)f=3 results with a standard perturbative evolution provides a new independent determination of the strong coupling constant at various relevant scales, in particular alpha(s)(m(Z)) 0: 1174+0010-0005 +/- 0: 001+0: 0005evol and alpha(nf)(s)=(3) (m(r)) = 0.308+007 +/- 004-0: 007 + 0: 002evol. A less conservative interpretation of our prescriptions favors central values closer to the upper limits of the first uncertainties. The theoretical accuracy is well comparable to the most precise recent single determinations of alpha(S), including some very recent lattice simulation determinations with fully dynamical quarks.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Renormalization Group Optimized Perturbation: αs from fπ
    Kneur, Jean-Loic
    Neveu, Andre
    NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2015, 258 : 59 - 62
  • [2] Renormalization group optimized perturbation theory at finite temperatures
    Kneur, Jean-Loeic
    Pinto, Marcus B.
    PHYSICAL REVIEW D, 2015, 92 (11):
  • [3] Chiral condensate from renormalization group optimized perturbation
    Kneur, Jean-Loic
    Neveu, Andre
    PHYSICAL REVIEW D, 2015, 92 (07):
  • [4] QCD pressure: Renormalization group optimized perturbation theory confronts lattice
    Kneur, Jean-Loic
    Pinto, Marcus Benghi
    Restrepo, Tulio E.
    PHYSICAL REVIEW D, 2021, 104 (03)
  • [5] Chiral Symmetry Breaking from Renormalization Group Optimized Perturbation
    Kneur, Jean-Loic
    Neveu, Andre
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2010, 207-08 : 232 - 235
  • [6] Perturbation theory and renormalization group equations
    Litim, DF
    Pawlowski, JM
    PHYSICAL REVIEW D, 2002, 65 (08): : 817011 - 817015
  • [7] Λ(MS)over-barQCD from renormalization group optimized perturbation
    Kneur, Jean-Loic
    Neveu, Andre
    PHYSICAL REVIEW D, 2012, 85 (01):
  • [8] On the Renormalization Group Approach to Perturbation Theory for PDEs
    Abou Salem, Walid K.
    ANNALES HENRI POINCARE, 2010, 11 (06): : 1007 - 1021
  • [9] Perturbation theory and the renormalization group in genetic dynamics
    Stephens, CR
    Zamora, A
    Wright, AH
    FOUNDATIONS OF GENETIC ALGORITHMS, 2005, 3469 : 192 - 214
  • [10] On the Renormalization Group Approach to Perturbation Theory for PDEs
    Walid K. Abou Salem
    Annales Henri Poincaré, 2010, 11 : 1007 - 1021