Korteweg-de Vries equation for ion acoustic soliton with negative ions in the presence of nonextensive electrons

被引:24
|
作者
Shan, S. Ali [1 ,2 ,3 ]
Akhtar, N. [2 ,3 ]
机构
[1] NCP, Islamabad 44000, Pakistan
[2] PINSTECH, Theoret Plasma Phys Div, Islamabad 44000, Pakistan
[3] PIEAS, Islamabad, Pakistan
关键词
Nonextensive electrons; KdV equation; Reductive perturbative technique; Positive and negative ions; PLASMA; STATISTICS; WAVES; PROPAGATION;
D O I
10.1007/s10509-013-1470-x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Korteweg-de Vries (KdV) equation for electrostatic ion acoustic wave in a three component plasma containing positive and negative ions along with the nonextensive electrons is derived. Fast and slow ion acoustic modes which propagate with different velocities are excited. The effects of variation of quantities like q (nonextensive parameter), Q (mass ratio of positive to negative ion), mu (electron to positive ion number density ratio), theta (i) (positive ion to electron temperature ratio) and theta (n) (negative ion to electron temperature ratio) have been presented for fast and slow ion acoustic modes. Both compressive and rarefactive solitons are observed. It is found that the solitary excitations strongly depend on the mass and density ratios of the positive and negative ions as well as on nonextensive electron parameter.
引用
收藏
页码:367 / 374
页数:8
相关论文
共 50 条
  • [1] Korteweg-de Vries equation for ion acoustic soliton with negative ions in the presence of nonextensive electrons
    S. Ali Shan
    N. Akhtar
    Astrophysics and Space Science, 2013, 346 : 367 - 374
  • [2] KORTEWEG-DE VRIES EQUATION FOR NONLINEAR ION-ACOUSTIC-WAVES IN A PLASMA WITH NEGATIVE-IONS
    DAS, GC
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1976, 4 (03) : 199 - 204
  • [3] Soliton fractals in the Korteweg-de Vries equation
    Zamora-Sillero, Elias
    Shapovalov, A. V.
    PHYSICAL REVIEW E, 2007, 76 (04):
  • [4] Korteweg-de Vries equation of ion acoustic surface waves
    Hong, HS
    Lee, HJ
    PHYSICS OF PLASMAS, 1999, 6 (08) : 3422 - 3424
  • [5] MULTIPLE SOLITON PRODUCTION AND KORTEWEG-DE VRIES EQUATION
    HERSHKOWITZ, N
    ROMESSER, T
    MONTGOMERY, D
    PHYSICAL REVIEW LETTERS, 1972, 29 (24) : 1586 - +
  • [6] Soliton interaction for the extended Korteweg-de Vries equation
    Marchant, TR
    Smyth, NF
    IMA JOURNAL OF APPLIED MATHEMATICS, 1996, 56 (02) : 157 - 176
  • [7] Soliton interaction for the extended Korteweg-de Vries equation
    Marchant, T.R.
    Smyth, N.F.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 1996, 56 (02): : 157 - 176
  • [8] Quasi-soliton solution of Korteweg-de Vries equation and its application in ion acoustic waves
    Wang Jian-Yong
    Cheng Xue-Ping
    Zeng Ying
    Zhang Yuan-Xiang
    Ge Ning-Yi
    ACTA PHYSICA SINICA, 2018, 67 (11)
  • [9] Soliton Phase Shift Calculation for the Korteweg-De Vries Equation
    Prins, Peter J.
    Wahls, Sander
    IEEE ACCESS, 2019, 7 : 122914 - 122930
  • [10] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313