Algebraicity of normal analytic compactifications of C2 with one irreducible curve at infinity

被引:2
|
作者
Mondal, Pinaki [1 ]
机构
[1] Coll Bahamas, Thompson Blvd, Nassau, Bahamas
关键词
algebraicity; compactifications; one place at infinity; valuations; NEWTON-PUISEUX EXPANSION; ONE PLACE; PLANE-CURVES; SINGULARITIES; CRITERIA; LINE;
D O I
10.2140/ant.2016.10.1641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an effective criterion to determine if a normal analytic compactification of C-2 with one irreducible curve at infinity is algebraic or not. As a byproduct we establish a correspondence between normal algebraic compactifications of C-2 with one irreducible curve at infinity and algebraic curves contained in C-2 with one place at infinity. Using our criterion we construct pairs of homeomorphic normal analytic surfaces with minimally elliptic singularities such that one of the surfaces is algebraic and the other is not. Our main technical tool is the sequence of key forms-a "global" variant of the sequence of key polynomials introduced by MacLane [1936] to study valuations in the "local" setting-which also extends the notion of approximate roots of polynomials considered by Abhyankar and Moh [1973].
引用
收藏
页码:1641 / 1682
页数:42
相关论文
共 50 条
  • [1] Analytic compactifications of C2/D
    Furushima, M.
    Ohshima, Y.
    Shima, T.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2007, 77 (1): : 155 - 168
  • [2] Analytic compactifications of C2/Zn
    Abe, M
    Furushima, M
    Shima, T
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2004, 74 (1): : 223 - 235
  • [3] COMPACTIFICATIONS OF C2
    BRENTON, L
    MATHEMATISCHE ANNALEN, 1973, 206 (04) : 303 - 310
  • [4] AN IRREDUCIBLE, SIMPLY CONNECTED ALGEBRAIC CURVE IN C2 IS EQUIVALENT TO A QUASI-HOMOGENEOUS ONE
    ZAIDENBERG, MG
    LIN, VJ
    DOKLADY AKADEMII NAUK SSSR, 1983, 271 (05): : 1048 - 1052
  • [5] Dynamical compactifications of C2
    Favre, Charles
    Jonsson, Mattias
    ANNALS OF MATHEMATICS, 2011, 173 (01) : 211 - 248
  • [6] Hirzebruch surfaces and compactifications of C2
    Furushima, M.
    Ishida, A.
    AFFINE ALGEBRAIC GEOMETRY, 2013, : 42 - 51
  • [7] Normal Analytic Polyhedra in C2 with a Noncompact Automorphism Group
    Kim, Kang-Tae
    Pagano, Andrea
    JOURNAL OF GEOMETRIC ANALYSIS, 2001, 11 (02) : 283 - 293
  • [8] ON THE LOJASIEWICZ EXPONENT AT INFINITY FOR POLYNOMIAL-MAPPINGS FROM C2 TO C2 AND COMPONENTS OF POLYNOMIAL AUTOMORPHISMS OF C2
    CHADZYNSKI, J
    KRASINSKI, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (13): : 1399 - 1402
  • [9] Curve counting on An x C2
    Cao, Yalong
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (03) : 659 - 674
  • [10] A REMARK ON C2 INFINITY-HARMONIC FUNCTIONS
    Yu, Yifeng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,