Coulomb Bound States of Strongly Interacting Photons

被引:62
|
作者
Maghrebi, M. F. [1 ,2 ]
Gullans, M. J. [1 ,2 ]
Bienias, P. [3 ]
Choi, S. [4 ]
Martin, I. [5 ]
Firstenberg, O. [6 ]
Lukin, M. D. [4 ]
Buechler, H. P. [3 ]
Gorshkov, A. V. [1 ,2 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
[3] Univ Stuttgart, Inst Theoret Phys 3, D-70550 Stuttgart, Germany
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[6] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
基金
美国国家科学基金会;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; RYDBERG BLOCKADE; ATOMS; CRYSTALLIZATION; OPTICS; LIGHT; GAS;
D O I
10.1103/PhysRevLett.115.123601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Efimov States of Strongly Interacting Photons
    Gullans, M. J.
    Diehl, S.
    Rittenhouse, S. T.
    Ruzic, B. P.
    D'Incao, J. P.
    Julienne, P.
    Gorshkov, A. V.
    Taylor, J. M.
    PHYSICAL REVIEW LETTERS, 2017, 119 (23)
  • [2] Strongly interacting photons
    Thad G. Walker
    Nature, 2012, 488 : 39 - 40
  • [3] Formation of robust bound states of interacting microwave photons
    Morvan, Alexis
    Andersen, Trond I.
    Mi, Xiao
    Neill, Charles
    Petukhov, Andre
    Kechedzhi, Kostyantyn
    Abanin, Dmitry
    Acharya, Rajeev
    Arute, Frank
    Arya, Kunal
    Asfaw, Abraham
    Atalaya, Juan
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Basso, Joao
    Bengtsson, Andreas
    Bortoli, Gina
    Bourassa, Alexandre
    Bovaird, Jenna
    Brill, Leon
    Broughton, Michael
    Buckley, Bob B.
    Buell, David A.
    Burger, Tim
    Burkett, Brian
    Bushnell, Nicholas
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Conner, Paul
    Courtney, William
    Crook, Alexander L.
    Curtin, Ben
    Debroy, Dripto M.
    Del Toro Barba, Alexander
    Demura, Sean
    Dunsworth, Andrew
    Eppens, Daniel
    Erickson, Catherine
    Faoro, Lara
    Farhi, Edward
    Fatemi, Reza
    Burgos, Leslie Flores
    Forati, Ebrahim
    Fowler, Austin G.
    Foxen, Brooks
    Giang, William
    Gidney, Craig
    Gilboa, Dar
    arXiv, 2022,
  • [4] Formation of robust bound states of interacting microwave photons
    A. Morvan
    T. I. Andersen
    X. Mi
    C. Neill
    A. Petukhov
    K. Kechedzhi
    D. A. Abanin
    A. Michailidis
    R. Acharya
    F. Arute
    K. Arya
    A. Asfaw
    J. Atalaya
    J. C. Bardin
    J. Basso
    A. Bengtsson
    G. Bortoli
    A. Bourassa
    J. Bovaird
    L. Brill
    M. Broughton
    B. B. Buckley
    D. A. Buell
    T. Burger
    B. Burkett
    N. Bushnell
    Z. Chen
    B. Chiaro
    R. Collins
    P. Conner
    W. Courtney
    A. L. Crook
    B. Curtin
    D. M. Debroy
    A. Del Toro Barba
    S. Demura
    A. Dunsworth
    D. Eppens
    C. Erickson
    L. Faoro
    E. Farhi
    R. Fatemi
    L. Flores Burgos
    E. Forati
    A. G. Fowler
    B. Foxen
    W. Giang
    C. Gidney
    D. Gilboa
    M. Giustina
    Nature, 2022, 612 : 240 - 245
  • [5] Formation of robust bound states of interacting microwave photons
    Morvan, A.
    Andersen, T. I.
    Mi, X.
    Neill, C.
    Petukhov, A.
    Kechedzhi, K.
    Abanin, D. A.
    Michailidis, A.
    Acharya, R.
    Arute, F.
    Arya, K.
    Asfaw, A.
    Atalaya, J.
    Bardin, J. C.
    Basso, J.
    Bengtsson, A.
    Bortoli, G.
    Bourassa, A.
    Bovaird, J.
    Brill, L.
    Broughton, M.
    Buckley, B. B.
    Buell, D. A.
    Burger, T.
    Burkett, B.
    Bushnell, N.
    Chen, Z.
    Chiaro, B.
    Collins, R.
    Conner, P.
    Courtney, W.
    Crook, A. L.
    Curtin, B.
    Debroy, D. M.
    Barba, A. Del Toro
    Demura, S.
    Dunsworth, A.
    Eppens, D.
    Erickson, C.
    Faoro, L.
    Farhi, E.
    Fatemi, R.
    Burgos, L. Flores
    Forati, E.
    Fowler, A. G.
    Foxen, B.
    Giang, W.
    Gidney, C.
    Gilboa, D.
    Giustina, M.
    NATURE, 2022, 612 (7939) : 240 - +
  • [6] Scattering resonances and bound states for strongly interacting Rydberg polaritons
    Bienias, P.
    Choi, S.
    Firstenberg, O.
    Maghrebi, M. F.
    Gullans, M.
    Lukin, M. D.
    Gorshkov, A. V.
    Buechler, H. P.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [7] Strongly interacting photons in a nonlinear cavity
    Imamoglu, A
    Schmidt, H
    Woods, G
    Deutsch, M
    PHYSICAL REVIEW LETTERS, 1997, 79 (08) : 1467 - 1470
  • [8] QUANTUM OPTICS Strongly interacting photons
    Walker, Thad G.
    NATURE, 2012, 488 (7409) : 39 - 40
  • [9] Quantum vortices of strongly interacting photons
    Drori, Lee
    Das, Bankim Chandra
    Zohar, Tomer Danino
    Winer, Gal
    Poem, Eilon
    Poddubny, Alexander
    Firstenberg, Ofer
    SCIENCE, 2023, 381 (6654) : 193 - +
  • [10] Nonequilibrium diagrammatic approach to strongly interacting photons
    Lang, Johannes
    Chang, Darrick E.
    Piazza, Francesco
    PHYSICAL REVIEW A, 2020, 102 (03)