Full density-matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model

被引:26
|
作者
Merker, L. [1 ,2 ]
Weichselbaum, A. [3 ,4 ]
Costi, T. A. [1 ,2 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[3] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, Dept Phys, D-80333 Munich, Germany
[4] Univ Munich, Ctr NanoSci, D-80333 Munich, Germany
关键词
DILUTE MAGNETIC-ALLOYS; THERMODYNAMIC PROPERTIES; STATIC PROPERTIES; ENERGY;
D O I
10.1103/PhysRevB.86.075153
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent developments in the numerical renormalization group (NRG) allow the construction of the full density matrix (FDM) of quantum impurity models [see A. Weichselbaum and J. von Delft, Phys. Rev. Lett. 99, 076402 (2007)] by using the completeness of the eliminated states introduced by F. B. Anders and A. Schiller [F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005)]. While these developments prove particularly useful in the calculation of transient response and finite-temperature Green's functions of quantum impurity models, they may also be used to calculate thermodynamic properties. In this paper, we assess the FDM approach to thermodynamic properties by applying it to the Anderson impurity model. We compare the results for the susceptibility and specific heat to both the conventional approach within NRG and to exact Bethe ansatz results. We also point out a subtlety in the calculation of the susceptibility (in a uniform field) within the FDM approach. Finally, we show numerically that for the Anderson model, the susceptibilities in response to a local and a uniform magnetic field coincide in the wide-band limit, in accordance with the Clogston-Anderson compensation theorem.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models
    Merker, L.
    Costi, T. A.
    [J]. PHYSICAL REVIEW B, 2012, 86 (07)
  • [2] Density-matrix renormalization group approach to quantum impurity problems
    Nishimoto, S
    Jeckelmann, E
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (04) : 613 - 625
  • [3] Block Lanczos density-matrix renormalization group method for general Anderson impurity models: Application to magnetic impurity problems in graphene
    Shirakawa, Tomonori
    Yunoki, Seiji
    [J]. PHYSICAL REVIEW B, 2014, 90 (19)
  • [4] Numerical renormalization group study of the Anderson-Holstein impurity model
    Hewson, AC
    Meyer, D
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (03) : 427 - 445
  • [5] Density matrix renormalization group study in energy space for a single-impurity Anderson model and an impurity quantum phase transition
    Shirakawa, Tomonori
    Yunoki, Seiji
    [J]. PHYSICAL REVIEW B, 2016, 93 (20)
  • [6] Density-matrix renormalization group study on an impurity symmetrically coupled to a quantum Heisenberg chain
    Zhang, WJ
    Igarashi, J
    Fulde, P
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (05) : 1537 - 1539
  • [7] Single magnetic impurity in a correlated electron system: Density-matrix renormalization group study
    Nishimoto, S.
    Fulde, P.
    [J]. PHYSICAL REVIEW B, 2007, 76 (03)
  • [8] Magnetic impurity coupled to a Heisenberg chain: Density-matrix renormalization-group study
    Zhang, W
    Igarashi, J
    Fulde, P
    [J]. PHYSICAL REVIEW B, 1997, 56 (02) : 654 - 660
  • [9] Kondo screening cloud in the single-impurity Anderson model: A density matrix renormalization group study
    Holzner, Andreas
    McCulloch, Ian P.
    Schollwoeck, Ulrich
    von Delft, Jan
    Heidrich-Meisner, Fabian
    [J]. PHYSICAL REVIEW B, 2009, 80 (20)
  • [10] A functional renormalization group approach to the Anderson impurity model
    Bartosch, Lorenz
    Freire, Hermann
    Ramos Cardenas, Jose Juan
    Kopietz, Peter
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (30)