Temperature-dependent nanoindentation response of materials

被引:20
|
作者
Chavoshi, Saeed Zare [1 ]
Xu, Shuozhi [2 ]
机构
[1] Imperial Coll London, Dept Mech Engn, London SW7 2AZ, England
[2] Univ Calif Santa Barbara, Calif NanoSyst Inst, Santa Barbara, CA 93106 USA
关键词
TRANSMISSION ELECTRON-MICROSCOPY; MOLECULAR-DYNAMICS SIMULATION; STRAIN-RATE SENSITIVITY; SINGLE-CRYSTAL SILICON; DRIVEN SHAPE-RECOVERY; BULK METALLIC-GLASS; ELEVATED-TEMPERATURES; MECHANICAL-PROPERTIES; THIN-FILMS; DEFORMATION MECHANISMS;
D O I
10.1557/mrc.2018.19
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is of the uttermost interest to understand the mechanical performance and deformation mechanisms contributing to small-scale plasticity of materials in micro/nanoelectromechanical systems at their service temperatures, which are usually above room temperature. In recent years, high-temperature nanoindentation experiments have emerged as a reliable approach to characterize the deformation behavior of materials at the nano and submicron scale. In this review, we highlight the role of the temperature in nanoindentation response of a wide variety of materials, with a particular focus on the thermally-activated deformation mechanisms in crystalline and non-crystalline materials under the indenter, e.g., dislocation processes, shear transformation zone, and phase transformations. A brief survey of the temperature-dependent nanoindentation elastic modulus, hardness, and creep behavior of materials is also provided. We also discuss experimental methods for correctly measuring the mechanical properties of materials at high temperatures.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 50 条
  • [1] Temperature-dependent nanoindentation response of materials
    Saeed Zare Chavoshi
    Shuozhi Xu
    MRS Communications, 2018, 8 : 15 - 28
  • [2] High-temperature nanoindentation for temperature-dependent mechanical behavior of enamel coating
    Yan, Gaosheng
    Yu, Wenshan
    Shen, Shengping
    SURFACE & COATINGS TECHNOLOGY, 2019, 374 : 541 - 548
  • [3] Temperature-dependent gradient system response
    Stich, Manuel
    Pfaff, Christiane
    Wech, Tobias
    Slawig, Anne
    Ruyters, Gudrun
    Dewdney, Andrew
    Ringler, Ralf
    Koestler, Herbert
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (04) : 1519 - 1527
  • [4] Model for temperature-dependent magnetization of nanocrystalline materials
    Bian, Q.
    Niewczas, M.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (01)
  • [5] Apparatus for temperature-dependent cathodoluminescence characterization of materials
    Bok, Jan
    Schauer, Petr
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2014, 25 (07)
  • [6] Temperature-Dependent Properties of Terahertz Window Materials
    Qiao, Hongzhan
    Zhong, Kai
    Li, Fangjie
    Zhang, Xianzhong
    Xu, Degang
    Yao, Jianquan
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [7] Tunable Radiation Patterns on Temperature-Dependent Materials
    Cheng, Lin
    Wu, Fan
    Huang, Kun
    PHOTONICS, 2024, 11 (07)
  • [8] Temperature-dependent mechanical properties of wood-adhesive bondline evaluated by nanoindentation
    Wang, Xinzhou
    Li, Yanjun
    Wang, Siqun
    Yu, Wangwang
    Deng, Yuhe
    JOURNAL OF ADHESION, 2017, 93 (08): : 640 - 656
  • [9] Temperature-Dependent Vesicle Response to Surface Topography
    Gillmor, Susan D.
    Heetderks, Julia J.
    Weiss, Paul S.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (33): : 11490 - 11495
  • [10] Physics of VCSELs: Temperature-dependent modulation response
    Odermatt, S
    Eitel, S
    Pfeiffer, M
    Bregy, A
    Witzigmann, B
    NUSOD '05: Proceedings of the 5th International Conference on Numerical Simulations of Optoelectronic Devices, 2004, : 25 - 26