Mind change speed-up for learning languages from positive data

被引:0
|
作者
Jain, Sanjay [1 ]
Kinber, Efim [2 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
[2] Sacred Heart Univ, Dept Comp Sci, Fairfield, CT 06825 USA
关键词
Inductive Inference; Algorithmic and automatic learning; Mind changes; Speedup; INTRINSIC COMPLEXITY; IDENTIFICATION;
D O I
10.1016/j.tcs.2013.04.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Within the frameworks of learning in the limit of indexed classes of recursive languages from positive data and automatic learning in the limit of indexed classes of regular languages (with automatically computable sets of indices), we study the problem of minimizing the maximum number of mind changes F-M(n) by a learner M on all languages with indices not exceeding n. For inductive inference of recursive languages, we establish two conditions under which F-M(n) can be made smaller than any recursive unbounded non-decreasing function. We also establish how F-M(n) is affected if at least one of these two conditions does not hold. In the case of automatic learning, some partial results addressing speeding up the function F-M(n) are obtained. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [1] Mind Change Speed-up for Learning Languages from Positive Data
    Jain, Sanjay
    Kinber, Efim
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 350 - 361
  • [2] Mind change complexity of inferring unbounded unions of pattern languages from positive data
    de Brecht, Matthew
    Yamamoto, Akihiro
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2006, 4264 : 124 - 138
  • [3] Quantum speed-up for unsupervised learning
    Esma Aïmeur
    Gilles Brassard
    Sébastien Gambs
    Machine Learning, 2013, 90 : 261 - 287
  • [4] Quantum speed-up for unsupervised learning
    Aimeur, Esma
    Brassard, Gilles
    Gambs, Sebastien
    MACHINE LEARNING, 2013, 90 (02) : 261 - 287
  • [5] A Data Structure to Speed-Up Machine Learning Algorithms on Massive Datasets
    Padillo, Francisco
    Luna, J. M.
    Cano, Alberto
    Ventura, Sebastian
    Hybrid Artificial Intelligent Systems, 2016, 9648 : 365 - 376
  • [6] Mind change complexity of inferring unbounded unions of restricted pattern languages from positive data
    de Brecht, Matthew
    Yamamoto, Akihiro
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (7-9) : 976 - 985
  • [7] Experimental quantum speed-up in reinforcement learning agents
    V. Saggio
    B. E. Asenbeck
    A. Hamann
    T. Strömberg
    P. Schiansky
    V. Dunjko
    N. Friis
    N. C. Harris
    M. Hochberg
    D. Englund
    S. Wölk
    H. J. Briegel
    P. Walther
    Nature, 2021, 591 : 229 - 233
  • [8] Experimental quantum speed-up in reinforcement learning agents
    Saggio, V.
    Asenbeck, B. E.
    Hamann, A.
    Stroemberg, T.
    Schiansky, P.
    Dunjko, V.
    Friis, N.
    Harris, N. C.
    Hochberg, M.
    Englund, D.
    Woelk, S.
    Briegel, H. J.
    Walther, P.
    NATURE, 2021, 591 (7849) : 229 - +
  • [9] Learning languages from positive data and negative counterexamples
    Jain, Sanjay
    Kinber, Efim
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2008, 74 (04) : 431 - 456
  • [10] Learning languages from positive data and negative counterexamples
    Jain, S
    Kinber, E
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2004, 3244 : 54 - 68