Simulation of micro-, grand-, and canonical ensembles of complex networks

被引:0
|
作者
Biely, Christoly
Thurner, Stefan
机构
[1] Univ Vienna, Complex Syst Res Grp, HNO, A-1090 Vienna, Austria
[2] Univ Vienna, A-1020 Vienna, Austria
来源
COMPUTATIONAL SCIENCE - ICCS 2006, PT 3, PROCEEDINGS | 2006年 / 3993卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The analysis of statistical ensembles of networks by means of simulation is an important possibility to explore networks which emerge by optimization of some 'fitness'-function. In this paper, we compare the situations of the micro-, grand- and canonical ensemble based on their respective partition functions. We present results for a specific, recently introduced Hamiltonian. Interestingly, for all three ensembles we find scale-free networks with 'complex' topology for a wide range of parameters. We further show results of some topological measures depending on energy and temperature.
引用
收藏
页码:1067 / 1074
页数:8
相关论文
共 50 条
  • [1] Harmonic superposition method for grand- canonical ensembles
    Calvo, F.
    Wales, D. J.
    CHEMICAL PHYSICS LETTERS, 2015, 623 : 17 - 21
  • [2] Grand Canonical Ensembles of Sparse Networks and Bayesian Inference
    Bianconi, Ginestra
    ENTROPY, 2022, 24 (05)
  • [3] Titration in Canonical and Grand-Canonical Ensembles
    Bakhshandeh, Amin
    Levin, Yan
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (43): : 9405 - 9411
  • [4] Grand Canonical Ensembles in General Relativity
    Klein, David
    Yang, Wei-Shih
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (01) : 61 - 83
  • [5] INEQUIVALENCE OF CANONICAL AND GRAND CANONICAL ENSEMBLES FOR BOSONIC SYSTEMS
    Mehdi, S. K.
    Daoudi, N.
    Kessal, S.
    ACTA PHYSICA POLONICA B, 2013, 44 (10): : 1949 - 1958
  • [6] Grand Canonical Ensembles in General Relativity
    David Klein
    Wei-Shih Yang
    Mathematical Physics, Analysis and Geometry, 2012, 15 : 61 - 83
  • [7] System-Size Dependence in Grand Canonical and Canonical Ensembles
    Chakraborty, Debajit
    Dufty, James
    Karasiev, Valentin V.
    CONCEPTS OF MATHEMATICAL PHYSICS IN CHEMISTRY: A TRIBUTE TO FRANK E. HARRIS - PT A, 2015, 71 : 11 - 27
  • [8] EQUIVALENCE OF CANONICAL AND GRAND CANONICAL ENSEMBLES IN QUANTUM STATISTICAL PHYSICS
    MATVIICHUK, KS
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1975, (12): : 1083 - 1086
  • [9] Coherent alloy phase separation: Differences in canonical and grand canonical ensembles
    Vandeworp, EM
    Newman, KE
    PHYSICAL REVIEW B, 1997, 55 (21): : 14222 - 14229
  • [10] Relationship between statistical sums of canonical and grand canonical ensembles of interacting particles
    Vall A.N.
    Russian Physics Journal, 2000, 43 (6) : 479 - 482