Efficient Privacy-Preserving Data Mining in Malicious Model

被引:0
|
作者
Emura, Keita [1 ]
Miyaji, Atsuko [1 ]
Rahman, Mohammad Shahriar [1 ]
机构
[1] Japan Adv Inst Sci & Technol, Ctr Highly Dependable Embedded Syst Technol, Nomi, Ishikawa 9231292, Japan
关键词
Privacy-preserving Data Mining; Malicious Model; Threshold Two-party Computation; Efficiency; PUBLIC-KEY ENCRYPTION; COMPUTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many distributed data mining settings, disclosure of the original data sets is not acceptable due to privacy concerns. To address such concerns, privacy-preserving data mining has been an active research area in recent years. While confidentiality is a key issue, scalability is also an important aspect to assess the performance of a privacy-preserving data mining algorithms for practical applications. With this in mind, Kantarcioglu et al. proposed secure dot product and secure set-intersection protocols for privacy-preserving data mining in malicious adversarial model using zero knowledge proofs, since the assumption of semi-honest adversary is unrealistic in some settings. Both the computation and communication complexities are linear with the number of data items in the protocols proposed by Kantarcioglu et al. In this paper, we build efficient and secure dot product and set-intersection protocols in malicious model. In our work, the complexity of computation and communication for proof of knowledge is always constant (independent of the number of data items), while the complexity of computation and communication for the encrypted messages remains the same as in Kantarcioglu et al.'s work (linear with the number of data items). Furthermore, we provide the security model in Universal Composability framework.
引用
收藏
页码:370 / 382
页数:13
相关论文
共 50 条
  • [1] Privacy-preserving data mining on data grids in the presence of malicious participants
    Gilburd, B
    Schuster, A
    Wolff, R
    [J]. 13TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE DISTRIBUTED COMPUTING, PROCEEDINGS, 2004, : 225 - 234
  • [2] Efficient Privacy-Preserving Logistic Model With Malicious Security
    Miao, Guanhong
    Wu, Samuel S.
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 5751 - 5766
  • [3] Efficient paillier cryptoprocessor for privacy-preserving data mining
    San, Ismail
    At, Nuray
    Yakut, Ibrahim
    Polat, Huseyin
    [J]. SECURITY AND COMMUNICATION NETWORKS, 2016, 9 (11) : 1535 - 1546
  • [4] Privacy-preserving data mining
    Agrawal, R
    Srikant, R
    [J]. SIGMOD RECORD, 2000, 29 (02) : 439 - 450
  • [5] DAG: A General Model for Privacy-Preserving Data Mining
    Teo, Sin G.
    Cao, Jianneng
    Lee, Vincent C. S.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (01) : 40 - 53
  • [6] DAG: A General Model for Privacy-Preserving Data Mining
    Teo, Sin G.
    Cao, Jianneng
    Lee, Vincent C. S.
    [J]. 2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 2018 - 2019
  • [7] A Review on Privacy-Preserving Data Mining
    Li, Xueyun
    Yan, Zheng
    Zhang, Peng
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2014, : 769 - 774
  • [8] Privacy-preserving collaborative data mining
    Zhan, J
    Chang, LW
    Matwin, S
    [J]. FOUNDATIONS AND NOVEL APPROACHES IN DATA MINING, 2006, 9 : 213 - +
  • [9] PRIVACY-PRESERVING COLLABORATIVE DATA MINING
    Zhan, Justin
    [J]. KMIS 2009: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE MANAGEMENT AND INFORMATION SHARING, 2009, : IS15 - IS15
  • [10] Privacy-Preserving Outsourcing of Data Mining
    Monreale, Anna
    Wang, Wendy Hui
    [J]. PROCEEDINGS 2016 IEEE 40TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE WORKSHOPS (COMPSAC), VOL 2, 2016, : 583 - 588