On topological degree theory for mappings of class (LS+) in reflexive Banach spaces

被引:0
|
作者
Chen, Yu Qing
Cho, Yeol Je [1 ]
机构
[1] Gyeongsang Natl Univ, Coll Educ, Dept Math Educ, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, Coll Educ, RINS, Chinju 660701, South Korea
[3] Foshan Univ, Dept Math, Foshan 528000, Guangdong, Peoples R China
关键词
Brouwer's degree theory; Leray-Schauder degree; monotone and maximal; monotone operators; mappings of classes; (S+) (S+) (L) and (LS+); L-pseudo-compact mapping; homotopy of mappings of class (LS plus ); pseudo-monotone and generalized pseudomonotone mappings; topological degree;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the mapping of class (LS+) in reflexive Banach spaces, which is a generalization of the mapping of class (S+), and then we construct a degree theory for mappings of class (LS+).
引用
收藏
页码:453 / 463
页数:11
相关论文
共 50 条