Toward a scalable quantum computing architecture with mixed species ion chains

被引:7
|
作者
Wright, John [1 ]
Auchter, Carolyn [1 ]
Chou, Chen-Kuan [1 ]
Graham, Richard D. [1 ]
Noel, Thomas W. [1 ]
Sakrejda, Tomasz [1 ]
Zhou, Zichao [1 ]
Blinov, Boris B. [1 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Ion trapping; Sympathetic cooling; Mixed species Ion chains; Scalable quantum computing architecture; ENTANGLEMENT;
D O I
10.1007/s11128-015-1220-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on progress toward implementing mixed ion species quantum information processing for a scalable ion-trap architecture. Mixed species chains may help solve several problems with scaling ion-trap quantum computation to large numbers of qubits. Initial temperature measurements of linear Coulomb crystals containing barium and ytterbium ions indicate that the mass difference does not significantly impede cooling at low ion numbers. Average motional occupation numbers are estimated to be n approximate to 130 quanta per mode for chains with small numbers of ions, which is within a factor of three of the Doppler limit for barium ions in our trap. We also discuss generation of ion-photon entanglement with barium ions with a fidelity of F >= 0.84 , which is an initial step towards remote ion-ion coupling in a more scalable quantum information architecture. Further, we are working to implement these techniques in surface traps in order to exercise greater control over ion chain ordering and positioning.
引用
收藏
页码:5339 / 5349
页数:11
相关论文
共 50 条
  • [1] Toward a scalable quantum computing architecture with mixed species ion chains
    John Wright
    Carolyn Auchter
    Chen-Kuan Chou
    Richard D. Graham
    Thomas W. Noel
    Tomasz Sakrejda
    Zichao Zhou
    Boris B. Blinov
    [J]. Quantum Information Processing, 2016, 15 : 5339 - 5349
  • [2] Scalable quantum computing architecture with mixed species ion chains
    Wright, John
    Auchter, Carolyn
    Chou, Chen-Kuan
    Graham, Richard D.
    Noel, Thomas W.
    Sakrejda, Tomasz
    Zhou, Zichao
    Blinov, Boris B.
    [J]. QUANTUM INFORMATION AND COMPUTATION XIII, 2015, 9500
  • [3] Toward a scalable, silicon-based quantum computing architecture
    Copsey, D
    Oskin, M
    Impens, F
    Metodiev, T
    Cross, A
    Chong, FT
    Chuang, IL
    Kubiatowicz, J
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (06) : 1552 - 1569
  • [4] A Functional Architecture for Scalable Quantum Computing
    Sete, Eyob A.
    Zeng, William J.
    Rigetti, Chad T.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2016,
  • [5] Quantum Science and Metrology with Mixed-Species Ion Chains
    Home, Jonathon P.
    [J]. ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 62, 2013, 62 : 231 - 277
  • [6] Scalable Architecture for Trapped-Ion Quantum Computing Using rf Traps and Dynamic Optical Potentials
    Schwerdt, David
    Peleg, Lee
    Shapira, Yotam
    Priel, Nadav
    Florshaim, Yanay
    Gross, Avram
    Zalic, Ayelet
    Afek, Gadi
    Akerman, Nitzan
    Stern, Ady
    Kish, Amit Ben
    Ozeri, Roee
    [J]. Physical Review X, 2024, 14 (04)
  • [7] Multilayer ion trap technology for scalable quantum computing and quantum simulation
    Bautista-Salvador, A.
    Zarantonello, G.
    Hahn, H.
    Preciado-Grijalva, A.
    Morgner, J.
    Wahnschaffe, M.
    Ospelkaus, C.
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (04)
  • [8] Toward scalable ion traps for quantum information processing
    Amini, J. M.
    Uys, H.
    Wesenberg, J. H.
    Seidelin, S.
    Britton, J.
    Bollinger, J. J.
    Leibfried, D.
    Ospelkaus, C.
    VanDevender, A. P.
    Wineland, D. J.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [9] Scalable ion trap quantum computing without moving ions
    Tian, L
    Blatt, R
    Zoller, P
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2005, 32 (02): : 201 - 208
  • [10] Scalable ion trap quantum computing without moving ions
    L. Tian
    R. Blatt
    P. Zoller
    [J]. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2005, 32 : 201 - 208