On the Chebyshev rank of multivariate splines in L1-approximation

被引:1
|
作者
Sommer, Manfred [1 ]
机构
[1] Katholische Univ Eichstatt Ingolstadt, Math Geograph Fak, D-85071 Eichstatt, Germany
关键词
Best L-1-approximation; Multivariate splines; Property A(k); Chebyshev rank; SUBSPACES; UNICITY;
D O I
10.1016/j.jat.2012.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Weighted L-1-approximation of continuous multivariate real-valued functions by finite-dimensional subspaces of multivariate splines of degree m >= 1 is studied. Lower and upper bounds for the Chebyshev rank, i.e., for the largest dimension of the sets of best L-1-approximations, are established. The exact value of the Chebyshev rank of linear splines is determined. Our investigations extend known results for bivariate splines to the multivariate case. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1472 / 1495
页数:24
相关论文
共 50 条