Predictive modeling of damage and failure in adhesively bonded metallic joints using cohesive interface elements

被引:53
|
作者
May, Michael [1 ]
Voss, Holger [1 ]
Hiermaier, Stefan [1 ]
机构
[1] EMI, Fraunhofer Inst High Speed Dynam, D-79104 Freiburg, Germany
关键词
Destructive testing; Finite element stress analysis; Fracture; Mechanical properties of adhesives; Cohesive interface elements; DEPENDENT CRACK-GROWTH; NUMERICAL-SIMULATION; FRACTURE-TOUGHNESS; PART I; DELAMINATION; COMPOSITES; THICKNESS; PROPAGATION; BEHAVIOR; FILLET;
D O I
10.1016/j.ijadhadh.2013.12.001
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A rate-dependent constitutive law for cohesive interface elements is introduced for the adhesive considering both, the rate dependency of the initiation stress and the rate dependency of the fracture toughness. The model is calibrated with experimental data available from the literature and validated against novel quasi-static and dynamic experimental results on an adhesively bonded T-joint made from high strength steel DP-K 30/50 and crash-optimized adhesive BETAMATE 1496V. The numerical predictions show an excellent correlation with the experimental results. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7 / 17
页数:11
相关论文
共 50 条
  • [1] Predicting fatigue damage in adhesively bonded joints using a cohesive zone model
    Khoramishad, H.
    Crocombe, A. D.
    Katnam, K. B.
    Ashcroft, I. A.
    INTERNATIONAL JOURNAL OF FATIGUE, 2010, 32 (07) : 1146 - 1158
  • [2] Modelling the environmental degradation of the interface in adhesively bonded joints using a cohesive zone approach
    Liljedahl, C. D. M.
    Crocombe, A. D.
    Wahab, M. A.
    Ashcroft, I. A.
    JOURNAL OF ADHESION, 2006, 82 (11): : 1061 - 1089
  • [3] Implementation of a probabilistic machine learning strategy for failure predictions of adhesively bonded joints using cohesive zone modeling
    Freed, Yuval
    Salviato, Marco
    Zobeiry, Navid
    International Journal of Adhesion and Adhesives, 2022, 118
  • [4] Implementation of a probabilistic machine learning strategy for failure predictions of adhesively bonded joints using cohesive zone modeling
    Freed, Yuval
    Salviato, Marco
    Zobeiry, Navid
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2022, 118
  • [5] Failure analysis of adhesively bonded joints using a modulatory damage model
    Khabaz-Aghdam, Ata
    Dizaji, Sharam A.
    Choupani, Naghdali
    da Silva, Lucas F. M.
    ENGINEERING FAILURE ANALYSIS, 2024, 163
  • [6] Analysis of cohesive failure in adhesively bonded joints with the SSPH meshless method
    Tsai, C. L.
    Guan, Y. L.
    Ohanehi, D. C.
    Dillard, J. G.
    Dillard, D. A.
    Batra, R. C.
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2014, 51 : 67 - 80
  • [7] Analysis of cohesive failure in adhesively bonded joints with the SSPH meshless method
    Tsai, C.L.
    Guan, Y.L.
    Ohanehi, D.C.
    Dillard, J.G.
    Dillard, D.A.
    Batra, R.C.
    Batra, R.C. (rbatra@vt.edu), 1600, Elsevier Ltd (51): : 67 - 80
  • [8] Progressive damage modeling of adhesively bonded lap joints
    Masmanidis, Iordanis T.
    Philippidis, Theodore P.
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2015, 59 : 53 - 61
  • [9] USING INTERFACE WAVES FOR MONITORING FATIGUE DAMAGE DEVELOPMENT IN ADHESIVELY BONDED JOINTS
    KLINE, RA
    HASHEMI, D
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1986, 33 (01) : 108 - 108
  • [10] Prediction of failure behavior of adhesively bonded CFRP scarf joints using a cohesive zone model
    Sun, Ligang
    Tie, Ying
    Hou, Yuliang
    Lu, Xingxue
    Li, Cheng
    ENGINEERING FRACTURE MECHANICS, 2020, 228