Two Binomial Identities of Ruehr Revisited

被引:2
|
作者
Allouche, J. -P. [1 ]
机构
[1] Sorbonne Univ, Inst Math Jussieu PRG, CNRS, Paris, France
来源
AMERICAN MATHEMATICAL MONTHLY | 2019年 / 126卷 / 03期
关键词
26C99; Primary; 11C08; Secondary; 05A19;
D O I
10.1080/00029890.2019.1546079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A curious identity, proposed by Kimura and proved by Kimura, Ruehr and others, involves two definite integrals of the same continuous function f composed with the polynomial . In his proof Ruehr indicates, without giving an explicit proof, that this identity, applied to , implies two equalities involving binomial sums. Using two identities given in a book of Comtet we provide an easy explicit way of deducing these equalities from Kimura's identity between integrals. Our derivation shows a link with the incomplete beta function, the binomial distribution law, the negative binomial distribution law, and a lemma used in a proof of a very weak form of the 3x + 1 conjecture.
引用
收藏
页码:217 / 225
页数:9
相关论文
共 50 条
  • [1] ON RUEHR'S IDENTITIES
    Alzer, Horst
    Prodinger, Helmut
    [J]. ARS COMBINATORIA, 2018, 139 : 247 - 254
  • [2] Two binomial-type identities
    Bruckman, PS
    Kwong, H
    [J]. FIBONACCI QUARTERLY, 2005, 43 (03): : 282 - 282
  • [3] FORMULAE FOR TWO WEIGHTED BINOMIAL IDENTITIES WITH THE FALLING FACTORIALS
    Kilic, Emrah
    Omur, Nese
    Koparal, Sibel
    [J]. ARS COMBINATORIA, 2018, 138 : 223 - 231
  • [4] Combinatorial proofs of two q-binomial coefficient identities
    Liu, Ji-cai
    Zhao, Yuan-yuan
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (04): : 381 - 386
  • [5] Integral proofs of two alternating sign binomial coefficient identities
    Larcombe, PJ
    Fennessey, EJ
    Koepf, WA
    [J]. UTILITAS MATHEMATICA, 2004, 66 : 93 - 103
  • [6] SOME BINOMIAL IDENTITIES
    BIZLEY, MTL
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (06): : 705 - &
  • [7] 2 BINOMIAL IDENTITIES
    BIZLEY, MTL
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 682 - &
  • [8] Two-state option pricing: Binomial models revisited
    Jabbour, GM
    Kramin, MV
    Young, SD
    [J]. JOURNAL OF FUTURES MARKETS, 2001, 21 (11) : 987 - 1001
  • [9] All binomial identities are orderable
    Kozlov, Dmitry N.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2017, 61 : 276 - 281
  • [10] On Some Identities with Binomial Coefficients
    Voblyi, V. A.
    [J]. MATHEMATICAL NOTES, 2023, 113 (3-4) : 453 - 457