Freeway Travel Time Prediction Using Takagi-Sugeno-Kang Fuzzy Neural Network

被引:43
|
作者
Zhang, Yunlong [1 ]
Ge, Hancheng [1 ]
机构
[1] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA
关键词
MODEL; ALGORITHMS;
D O I
10.1111/mice.12014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article presents a Takagi-Sugeno-Kang Fuzzy Neural Network (TSKFNN) approach to predict freeway corridor travel time with an online computing algorithm. TSKFNN, a combination of a Takagi-Sugeno-Kang (TSK) type fuzzy logic system and a neural network, produces strong prediction performance because of its high accuracy and quick convergence. Real world data collected from US-290 in Houston, Texas are used to train and validate the network. The prediction performance of the TSKFNN is investigated with different combinations of traffic count, occupancy, and speed as input options. The comparison between online TSKFNN, offline TSKFNN, the back propagation neural network (BPNN) and the time series model (ARIMA) is made to evaluate the performance of TSKFNN. The results show that using count, speed, and occupancy together as input produces the best TSKFNN predictions. The online TSKFNN outperforms other commonly used models and is a promising tool for reliable travel time prediction on a freeway corridor.
引用
收藏
页码:594 / 603
页数:10
相关论文
共 50 条
  • [1] Traffic Prediction using a Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) Fuzzy Neural Network
    Ngoc Nam Nguyen
    Quek, Chai
    Cheu, Eng Yeow
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [2] Multilabel Takagi-Sugeno-Kang Fuzzy System
    Lou, Qiongdan
    Deng, Zhaohong
    Xiao, Zhiyong
    Choi, Kup-Sze
    Wang, Shitong
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) : 3410 - 3425
  • [3] Bayesian Takagi-Sugeno-Kang Fuzzy Classifier
    Gu, Xiaoqing
    Chung, Fu-Lai
    Wang, Shitong
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (06) : 1655 - 1671
  • [4] Stock Price Prediction using Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) Fuzzy Neural Network
    Ngoc Nam Nguyen
    Quek, Chai
    [J]. 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [5] Desulfurization process using Takagi-Sugeno-Kang fuzzy modeling
    Rezaee, Babak
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2010, 46 (1-4): : 191 - 197
  • [6] MS-TSKfnn: Novel Takagi-Sugeno-Kang fuzzy neural network using ART like clustering
    Wang, D
    Quek, C
    Ng, GS
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2361 - 2366
  • [7] Robust identification of Takagi-Sugeno-Kang fuzzy models using regularization
    Johansen, TA
    [J]. FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 1996, : 180 - 186
  • [8] Image Quality Assessment Using Takagi-Sugeno-Kang Fuzzy Model
    Dordevic, Dragana
    Kukolj, Dragan
    Schelkens, Peter
    [J]. SIXTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2014), 2015, 9443
  • [9] A Deep Takagi-Sugeno-Kang Fuzzy Classifier for Imbalanced Data
    Bian, Zekang
    Zhang, Jin
    Wang, Shitong
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (03): : 211 - 224
  • [10] Takagi-sugeno-kang fuzzy systems with dynamic rule weights
    Zhang, Yuanpeng
    Chung, Fu-Lai
    Wang, Shitong
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (06) : 8535 - 8550