A rotary reactor for thermal and plasma-enhanced atomic layer deposition on powders and small objects

被引:44
|
作者
Longrie, Delphine [1 ]
Deduytsche, Davy [1 ]
Haemers, Jo [1 ]
Driesen, Kris [2 ]
Detavernier, Christophe [1 ]
机构
[1] Univ Ghent, Dept Solid State Sci, COCOON, B-9000 Ghent, Belgium
[2] Umicore, B-2250 Olen, Belgium
来源
基金
欧洲研究理事会;
关键词
Atomic layer deposition; Rotary reactor; Nanoparticles; FLUIDIZED-BED REACTOR; FINE PARTICLES; ZNO FILMS; NANOPARTICLES; CVD; QUANTITIES; ZRO2;
D O I
10.1016/j.surfcoat.2012.10.045
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To conformally coat large amounts of particles using atomic layer deposition (ALD), agitation of the particles and efficient reactant usage are necessary. A rotary reactor was developed to enable both thermal and plasma-enhanced ALD growth on agitated particles. The effectiveness of the rotary reactor design was demonstrated by depositing Al2O3, TiO2 and AlN by thermal and plasma-enhanced ALD on ZnO nanopowder, stainless steel micron sized powder, titanium granules and glass beads. In-situ optical emission spectroscopy (OES) and mass spectroscopy (MS) measurements were performed to monitor saturation of the ALD half reactions, while ex-situ X-ray fluorescence (XRF), X-ray photo-electron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM) were used to confirm the composition and conformality of the deposited films. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条
  • [1] Thermal and Plasma-Enhanced Atomic Layer Deposition of TiN Using TDMAT and NH3 on Particles Agitated in a Rotary Reactor
    Longrie, Delphine
    Deduytsche, Davy
    Haemers, Jo
    Smet, Philippe F.
    Driesen, Kris
    Detavernier, Christophe
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) : 7316 - 7324
  • [2] Plasma-Enhanced Atomic Layer Deposition of Ni
    Lee, Han-Bo-Ram
    Bang, Sung-Hwan
    Kim, Woo-Hee
    Gu, Gil Ho
    Lee, Young Kuk
    Chung, Taek-Mo
    Kim, Chang Gyoun
    Park, Chan Gyung
    Kim, Hyungjun
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (05) : 05FA111 - 05FA114
  • [3] Plasma Enhanced Atomic Layer Deposition on Powders
    Rampelberg, G.
    Longrie, D.
    Deduytsche, D.
    Detavernier, C.
    ATOMIC LAYER DEPOSITION APPLICATIONS 10, 2014, 64 (09): : 51 - 62
  • [4] Topographical selective deposition: A comparison between plasma-enhanced atomic layer deposition/sputtering and plasma-enhanced atomic layer deposition/quasi-atomic layer etching approaches
    Jaffal, Moustapha
    Yeghoyan, Taguhi
    Lefevre, Gauthier
    Gassilloud, Remy
    Posseme, Nicolas
    Vallee, Christophe
    Bonvalot, Marceline
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (03):
  • [5] Atomistic Simulations of Plasma-Enhanced Atomic Layer Deposition
    Becker, Martin
    Sierka, Marek
    MATERIALS, 2019, 12 (16)
  • [6] Plasma-enhanced atomic layer deposition of zinc phosphate
    Dobbelaere, T.
    Minjauw, M.
    Ahmad, T.
    Vereecken, P. M.
    Detavernier, C.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2016, 444 : 43 - 48
  • [7] Plasma-enhanced atomic layer deposition of tungsten nitride
    Sowa, Mark J.
    Yemane, Yonas
    Prinz, Fritz B.
    Provine, J.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (05):
  • [8] Plasma-enhanced atomic layer deposition for plasmonic TiN
    Otto, Lauren M.
    Hammack, Aaron T.
    Aloni, Shaul
    Ogletree, D. Frank
    Olynick, Deirdre L.
    Dhuey, Scott
    Stadler, Bethanie J. H.
    Schwartzberg, Adam M.
    NANOPHOTONIC MATERIALS XIII, 2016, 9919
  • [9] Plasma-enhanced atomic layer deposition of vanadium nitride
    Kozen, Alexander C.
    Sowa, Mark J.
    Ju, Ling
    Strandwitz, Nicholas C.
    Zeng, Guosong
    Babuska, Tomas F.
    Hsain, Zakaria
    Krick, Brandon A.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2019, 37 (06):
  • [10] Multiscale computational fluid dynamics modeling and reactor design of plasma-enhanced atomic layer deposition
    Zhang, Yichi
    Ding, Yangyao
    Christofides, Panagiotis D.
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 142