Unbiased complex Hadamard matrices and bases

被引:8
|
作者
Best, Darcy [1 ]
Kharaghani, Hadi [1 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Complex Hadamard matrices; Real Hadamard matrices; Unbiased Hadamard matrices; Unbiased bases;
D O I
10.1007/s12095-010-0029-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce mutually unbiased complex Hadamard (MUCH) matrices and show that the number of MUCH matrices of order 2n, n odd, is at most 2 and the bound is attained for n = 1, 5, 9. Furthermore, we prove that certain pairs of mutually unbiased complex Hadamard matrices of order m can be used to construct pairs of unbiased real Hadamard matrices of order 2m. As a consequence we generate a new pair of unbiased real Hadamard matrices of order 36.
引用
收藏
页码:199 / 209
页数:11
相关论文
共 50 条
  • [1] Unbiased complex Hadamard matrices and bases
    Darcy Best
    Hadi Kharaghani
    Cryptography and Communications, 2010, 2 : 199 - 209
  • [2] Unbiased Hadamard matrices and bases
    Kharaghani, Hadi
    INFORMATION SECURITY, CODING THEORY AND RELATED COMBINATORICS: INFORMATION CODING AND COMBINATORICS, 2011, 29 : 312 - 325
  • [3] Hadamard matrices from mutually unbiased bases
    Dita, P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (07)
  • [4] Real entries of complex Hadamard matrices and mutually unbiased bases in dimension six
    Liang, Mengfan
    Hu, Mengyao
    Sun, Yize
    Chen, Lin
    Chen, Xiaoyu
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (15): : 2908 - 2925
  • [5] Mutually unbiased bases and Hadamard matrices of order six
    Bengtsson, Ingemar
    Bruzda, Wojciech
    Ericsson, Asa
    Larsson, Jan-Ake
    Tadej, Wojciech
    Zyczkowski, Karol
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
  • [6] Isolated Hadamard matrices from mutually unbiased product bases
    McNulty, Daniel
    Weigert, Stefan
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [7] Systems of mutually unbiased Hadamard matrices containing real and complex matrices
    Matolcsi, M.
    Ruzsa, I. Z.
    Weiner, M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 55 : 35 - 47
  • [8] On the real unbiased Hadamard matrices
    Holzmann, W. H.
    Kharaghani, H.
    Orrick, W.
    COMBINATORICS AND GRAPHS, 2010, 531 : 243 - +
  • [9] Construction of mutually unbiased maximally entangled bases through permutations of Hadamard matrices
    Dengming xu
    Quantum Information Processing, 2017, 16
  • [10] Construction of mutually unbiased maximally entangled bases through permutations of Hadamard matrices
    Xu, Dengming
    QUANTUM INFORMATION PROCESSING, 2017, 16 (03)