Using Machine Learning to Detect Problems in ECG Data Collection

被引:0
|
作者
Kalkstein, Nir [1 ]
Kinar, Yaron [1 ]
Na'aman, Michael [1 ]
Neumark, Nir [1 ]
Akiva, Pini [1 ]
机构
[1] Medial Res, IL-45930 Ramot Hashavim, Israel
来源
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We describe a data-driven approach, using a combination of machine learning algorithms to solve the 2011 Physionet/Computing in Cardiology (CinC) challenge - identifying data collection problems at 12 leads electrocardiography (ECG). Our data-driven approach reaches an internal (cross-validation) accuracy of almost 93% on the training set, and accuracy of 91.2% on the test set.
引用
收藏
页码:437 / 440
页数:4
相关论文
共 50 条
  • [1] Optimizing ECG to detect echocardiographic left ventricular hypertrophy with computer-based ECG data and machine learning
    Garza Salazar, Fernando De la
    Romero Ibarguengoitia, Maria Elena
    Azpiri Lopez, Jose Ramon
    Gonzalez Cantu, Arnulfo
    [J]. PLOS ONE, 2021, 16 (11):
  • [2] Clasification Of Arrhythmic ECG Data Using Machine Learning Techniques
    Vishwa, Abhinav
    Lal, Mohit K.
    Dixit, Sharad
    Vardwaj, Pritish
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2011, 1 (04): : 68 - 71
  • [3] Using NLP and Machine Learning to Detect Data Privacy Violations
    Silva, Paulo
    Goncalves, Carolina
    Godinho, Carolina
    Antunes, Nuno
    Curado, Marilia
    [J]. IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 972 - 977
  • [4] In Vitro Data Collection Using Image Analysis and Machine Learning
    Niedz, R. P.
    [J]. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2020, 56 (01) : S17 - S17
  • [5] Optimizing Data Collection for Machine Learning
    Mahmood, Rafid
    Lucas, James
    Alvarez, Jose M.
    Fidler, Sanja
    Law, Marc T.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] ECG Data Analysis with IoT and Machine Learning
    Shrestha, Abhigya Pote
    Yu, Chen-Hsiang
    [J]. 2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 323 - 327
  • [7] Using machine learning to detect events in eye-tracking data
    Zemblys, Raimondas
    Niehorster, Diederick C.
    Komogortsev, Oleg
    Holmqvist, Kenneth
    [J]. BEHAVIOR RESEARCH METHODS, 2018, 50 (01) : 160 - 181
  • [8] An approach using machine learning and public data to detect traffic jams
    Saraiva, Tiago do Vale
    Vieira Campos, Carlos Alberto
    [J]. IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 675 - 680
  • [9] Using machine learning to detect events in eye-tracking data
    Raimondas Zemblys
    Diederick C. Niehorster
    Oleg Komogortsev
    Kenneth Holmqvist
    [J]. Behavior Research Methods, 2018, 50 : 160 - 181
  • [10] Machine Learning Approach to Detect Cardiac Arrhythmias in ECG Signals: A Survey
    Sahoo, S.
    Dash, M.
    Behera, S.
    Sabut, S.
    [J]. IRBM, 2020, 41 (04) : 185 - 194