Effect of symmetry on sonic band-gap in two-dimensional phononic crystals

被引:0
|
作者
Zhong, LH [1 ]
Wu, FG
Li, XL
Zhong, HL
Zhong, S
机构
[1] Guangdong Univ Technol, Expt Ctr, Guangzhou 510090, Peoples R China
[2] Guangdong Univ Technol, Dept Appl Phys, Guangzhou 510090, Peoples R China
关键词
artificial crystal; phononic crystals; symmetry; band gap;
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Using the plane-wave expansion method, we calculated the sonic band structures of two-dimensional water-mercury phononic crystals of regular triangle, quadrilateral, hexagon, octagon prisms and cylinders arrayed in square lattice respectively. Our study concerns the dependence of band gaps on rotation angle of the noncircular rods. And we found that, for each rod and (relatively small) filling fraction, both the maximum and minimum of band gap present in the case of the crystals' highest symmetry. By adjusting the rods' orientation, the maximum of band gap for each filling fraction can be obtained and, results show that for water/mercury system the width of band-gap increases with the heightening of rods' symmetry, while for mercury/water system the exact opposite is true except for the case of square rods, which produces the largest band-gaps.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 28 条
  • [1] Large two-dimensional sonic band gaps
    Caballero, D
    Sánchez-Dehesa, J
    Rubio, C
    Mártinez-Sala, R
    Sánchez-Pérez, JV
    Meseguer, F
    Llinares, J
    [J]. PHYSICAL REVIEW E, 1999, 60 (06): : R6316 - R6319
  • [2] STOP BANDS FOR ELASTIC-WAVES IN PERIODIC COMPOSITE-MATERIALS
    ECONOMOU, EN
    SIGALAS, M
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1994, 95 (04): : 1734 - 1740
  • [3] Spatial trapping of acoustic waves in bubbly liquids
    Goffaux, C
    Vigneron, JP
    [J]. PHYSICA B, 2001, 296 (1-3): : 195 - 200
  • [4] Theoretical study of a tunable phononic band gap system
    Goffaux, C
    Vigneron, JP
    [J]. PHYSICAL REVIEW B, 2001, 64 (07):
  • [5] Acoustic wave propagating in one-dimensional Fibonacci binary composite systems
    Hou, ZL
    Wu, FG
    Liu, YY
    [J]. PHYSICA B-CONDENSED MATTER, 2004, 344 (1-4) : 391 - 397
  • [6] ELASTIC-WAVE BAND-GAPS IN 3-D PERIODIC POLYMER MATRIX COMPOSITES
    KAFESAKI, M
    SIGALAS, MM
    ECONOMOU, EN
    [J]. SOLID STATE COMMUNICATIONS, 1995, 96 (05) : 285 - 289
  • [7] Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency
    Khelif, A
    Deymier, PA
    Djafari-Rouhani, B
    Vasseur, JO
    Dobrzynski, L
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 94 (03) : 1308 - 1311
  • [8] Kuai SL, 2002, J INORG MATER, V17, P159
  • [9] Kuai SL, 2001, J INORG MATER, V16, P193
  • [10] THEORY OF ACOUSTIC BAND-STRUCTURE OF PERIODIC ELASTIC COMPOSITES
    KUSHWAHA, MS
    HALEVI, P
    MARTINEZ, G
    DOBRZYNSKI, L
    DJAFARIROUHANI, B
    [J]. PHYSICAL REVIEW B, 1994, 49 (04): : 2313 - 2322