Primal-dual affine-scaling algorithms fail for semidefinite programming

被引:4
|
作者
Muramatsu, M
Vanderbei, RJ
机构
[1] Sophia Univ, Chiyoda Ku, Tokyo 102, Japan
[2] Princeton Univ, Princeton, NJ 08544 USA
关键词
semidefinite programming; primal-dual interior;
D O I
10.1287/moor.24.1.149
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we give an example of a semidefinite programming problem in which primal-dual affine-scaling algorithms using the HRVW/KSH/M, MT, and AHO directions fail. We prove that each of these algorithms can generate a sequence converging to a non-optimal solution and that, for the AHO direction, even its associated continuous trajectory can converge to a non-optimal point. In contrast with these directions, we show that the primal-dual affine-scaling algorithm using the NT direction for the same semidefinite programming problem always generates a sequence converging to the optimal solution. Both primal and dual problems have interior feasible solutions and unique optimal solutions which satisfy strict complementarity, and are nondegenerate everywhere.
引用
收藏
页码:149 / 175
页数:27
相关论文
共 50 条
  • [1] Polynomial primal-dual affine scaling algorithms in semidefinite programming
    De Klerk, E
    Roos, C
    Terlaky, T
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 1998, 2 (01) : 51 - 69
  • [2] Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming
    E. de Klerk
    C. Roos
    T. Terlaky
    [J]. Journal of Combinatorial Optimization, 1998, 2 : 51 - 69
  • [3] Primal-dual potential reduction methods for semidefinite programming using affine-scaling directions
    de Klerk, E
    Roos, C
    Terlaky, T
    [J]. APPLIED NUMERICAL MATHEMATICS, 1999, 29 (03) : 335 - 360
  • [4] Polynomial primal-dual cone affine scaling for semidefinite programming
    Berkelaar, AB
    Sturm, JF
    Zhang, SZ
    [J]. APPLIED NUMERICAL MATHEMATICS, 1999, 29 (03) : 317 - 333
  • [5] On the chaotic behavior of the primal-dual affine-scaling algorithm for linear optimization
    Bruin, H.
    Fokkink, R.
    Gu, G.
    Roos, C.
    [J]. CHAOS, 2014, 24 (04)
  • [6] SUPERLINEAR PRIMAL-DUAL AFFINE SCALING ALGORITHMS FOR LCP
    MONTEIRO, RDC
    WRIGHT, SJ
    [J]. MATHEMATICAL PROGRAMMING, 1995, 69 (02) : 311 - 333
  • [7] Primal-dual path-following algorithms for semidefinite programming
    Monteiro, RDC
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (03) : 663 - 678
  • [8] Symmetric primal-dual path-following algorithms for semidefinite programming
    Sturm, JF
    Zhang, SZ
    [J]. APPLIED NUMERICAL MATHEMATICS, 1999, 29 (03) : 301 - 315
  • [9] Polynomial convergence of a new family of primal-dual algorithms for semidefinite programming
    Monteiro, RDC
    Tsuchiya, T
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (03) : 551 - 577
  • [10] Polynomiality of primal-dual affine scaling algorithms for nonlinear complementarity problems
    Benjamin Jansen
    Kees Roos
    Tamás Terlaky
    Akiko Yoshise
    [J]. Mathematical Programming, 1997, 78 : 315 - 345