Simulation and evaluation of 3D traction force microscopy

被引:7
|
作者
Holenstein, C. N. [1 ,2 ]
Lendi, C. R. [1 ]
Wili, Nino [1 ]
Snedeker, J. G. [1 ,2 ]
机构
[1] Balgrist Univ Hosp, Dept Orthoped, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Traction force microscopy; simulation; evaluation; digital volume correlation; CELL-MATRIX ADHESIONS; CONTRACTILE FORCES;
D O I
10.1080/10255842.2019.1599866
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Measuring cell-generated forces by Traction Force Microscopy (TFM) has become a standard tool in cell mechanobiology. Although widely used in two dimensional (2D) experiments, only a few methods exist to measure traction in three-dimensional (3D) cell culture, since 3D volumetric high-resolution microscopy and more demanding computational approaches are required. Although it is commonly known that the selected experimental and computational setup highly influence the quality and accuracy of the results, no existing methods can adequately assess the errors involved in this process. We present a fully integrated simulation and evaluation platform that allows one to simulate TFM images and quantify errors of an applied approach for traction stress reconstruction, in order to improve experiments that attempt to measure mechanical interaction in cellular systems. In this context, we show that a careful parameter selection can decrease the reconstructed traction error by up to 40%.
引用
收藏
页码:853 / 860
页数:8
相关论文
共 50 条
  • [1] 3D Viscoelastic traction force microscopy
    Toyjanova, Jennet
    Hannen, Erin
    Bar-Kochba, Eyal
    Darling, Eric M.
    Henann, David L.
    Franck, Christian
    SOFT MATTER, 2014, 10 (40) : 8095 - 8106
  • [2] 3D Traction force microscopy in fibrin gels.
    Adhikari, A. S.
    Leijnse, N.
    Oddershede, L. B.
    Dunn, A. R.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [3] High Resolution, Large Deformation 3D Traction Force Microscopy
    Toyjanova, Jennet
    Bar-Kochba, Eyal
    Lopez-Fagundo, Cristina
    Reichner, Jonathan
    Hoffman-Kim, Diane
    Franck, Christian
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 493A - 493A
  • [4] Regularization techniques and inverse approaches in 3D Traction Force Microscopy
    Apolinar-Fernandez, Alejandro
    Blazquez-Carmona, Pablo
    Ruiz-Mateos, Raquel
    Barrasa-Fano, Jorge
    Van Oosterwyck, Hans
    Reina-Romo, Esther
    Sanz-Herrera, Jose A.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 283
  • [5] Application of 3D Traction Force Microscopy to Mechanotransduction of Cell Clusters
    Notbohm, Jacob
    Kim, Jin-Hong
    Asthagiri, Anand
    Ravichandran, Guruswami
    ADVANCES IN EXPERIMENTAL MECHANICS VIII, 2011, 70 : 21 - +
  • [6] High Resolution, Large Deformation 3D Traction Force Microscopy
    Toyjanova, Jennet
    Bar-Kochba, Eyal
    Lopez-Fagundo, Cristina
    Reichner, Jonathan
    Hoffman-Kim, Diane
    Franck, Christian
    PLOS ONE, 2014, 9 (04):
  • [7] 3D Micropatterned Traction Force Microscopy: A Technique to Control 3D Cell Shape While Measuring Cell-Substrate Force Transmission
    Faure, Laura M.
    Gomez-Gonzalez, Manuel
    Baguer, Ona
    Comelles, Jordi
    Martinez, Elena
    Arroyo, Marino
    Trepat, Xavier
    Roca-Cusachs, Pere
    ADVANCED SCIENCE, 2024, 11 (46)
  • [8] Hierarchical Bayesian 3D Traction Force Microscopy with Local Regularization Based on Image Quality
    Kandasamy, Adithan
    Yeh, Yi-Ting
    Schwartz, Amy B.
    Lasheras, Juan C.
    del Alamo, Juan C.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 193A - 193A
  • [9] NON-REGULARISED INVERSE FINITE ELEMENT ANALYSIS FOR 3D TRACTION FORCE MICROSCOPY
    Munoz, Jose J.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (05) : 763 - 781
  • [10] 3D Traction Force Microscopy in Biological Gels: From Single Cells to Multicellular Spheroids
    Cheung, Brian C. H.
    Abbed, Rana J.
    Wu, Mingming
    Leggett, Susan E.
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2024, 26 : 93 - 118