Constructions of Partial MDS Codes Over Small Fields

被引:28
|
作者
Gabrys, Ryan [1 ]
Yaakobi, Eitan [2 ]
Blaum, Mario [3 ]
Siegel, Paul H. [4 ,5 ]
机构
[1] Spawar Syst Ctr, San Diego, CA 92115 USA
[2] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[3] IBM Corp, Almaden Res Ctr, Res Div, San Jose, CA 95120 USA
[4] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Ctr Memory & Recording Res, La Jolla, CA 92093 USA
基金
以色列科学基金会;
关键词
Partial MDS codes; sector-disk codes; locally recoverable codes;
D O I
10.1109/TIT.2018.2890201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Partial MDS (PMDS) codes are a class of erasure-correcting array codes that combine local correction of the rows with global correction of the array. An m x n array code is called an (r; s) PMDS code if each row belongs to an [n, n - r, r + 1] MDS code and the code can correct erasure patterns consisting of r erasures in each row together with s more erasures anywhere in the array. While a recent construction by Calis and Koyluoglu generates (r; s) PMDS codes for all r and s, its field size is exponentially large. In this paper, a family of PMDS codes with field size O (max{m, n(r+s)}(s)) is presented for the case where r = O(1), s = O(1).
引用
收藏
页码:3692 / 3701
页数:10
相关论文
共 50 条
  • [1] Constructions of Partial MDS Codes over Small Fields
    Gabrys, Ryan
    Yaakobi, Eitan
    Blaum, Mario
    Siegel, Paul H.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1 - 5
  • [2] Constructions of MDS Codes via Random Vandermonde and Cauchy Matrices over Small Fields
    Dau, Son Hoang
    Song, Wentu
    Sprintson, Alex
    Yuen, Chau
    2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 949 - 955
  • [3] New constructions of quantum MDS codes over finite fields
    Jin, Renjie
    Luo, Jinquan
    Fang, Xiaolei
    Qu, Longjiang
    QUANTUM INFORMATION PROCESSING, 2022, 21 (12)
  • [4] New constructions of quantum MDS codes over finite fields
    Renjie Jin
    Jinquan Luo
    Xiaolei Fang
    Longjiang Qu
    Quantum Information Processing, 21
  • [5] ON ADDITIVE MDS CODES OVER SMALL FIELDS
    Ball, Simeon
    Gamboa, Guillermo
    Lavrauw, Michel
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2021, : 828 - 844
  • [6] Quantum MDS Codes over Small Fields
    Grassi, Markus
    Rotteler, Martin
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1104 - 1108
  • [7] Sparse and Balanced MDS Codes Over Small Fields
    Chen, Tingting
    Zhang, Xiande
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (08) : 5112 - 5125
  • [8] Near-MDS codes over some small fields
    Dodunekov, SM
    Landjev, IN
    DISCRETE MATHEMATICS, 2000, 213 (1-3) : 55 - 65
  • [9] Some new constructions of MDS self-dual codes over finite fields
    Lebed, Khawla
    Liu, Hongwei
    Finite Fields and their Applications, 2022, 77
  • [10] Some new constructions of MDS self-dual codes over finite fields
    Lebed, Khawla
    Liu, Hongwei
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77