A Distributed Spatio-temporal EEG/MEG Inverse Solver

被引:0
|
作者
Ou, Wanmei [1 ]
Golland, Polina [1 ]
Haemaelaeinen, Matti [2 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] MGH, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel l(1)l(2-)norm inverse solver for estimating the sources of EEG/MEG signals. Based on the standard l(1)-norm inverse solver, the proposed sparse distributed inverse solver integrates the l(1)-norm spatial model with a temporal model of the source signals in order to avoid unstable activation patterns and "spiky" reconstructed signals often produced by the original solvers. The joint spatio-temporal model leads to a cost function with an l(1)l(2)-norm regularizer whose minimization can be reduced to a convex second-order cone programming problem and efficiently solved using the interior-point method. Validation with simulated and real MEG data shows that the proposed solver yields source time course estimates qualitatively similar to those obtained through dipole fitting, but without the need to specify the number of dipole sources in advance. Furthermore, the l(1)l(2)-norm solver achieves fewer false positives and a better representation of the source locations than the conventional l(2) minimum-norm estimates.
引用
收藏
页码:26 / +
页数:3
相关论文
共 50 条
  • [1] A distributed spatio-temporal EEG/MEG inverse solver
    Ou, Wanmei
    Haemaelaeinen, Matti S.
    Golland, Polina
    [J]. NEUROIMAGE, 2009, 44 (03) : 932 - 946
  • [2] A spatio-temporal solution for the EEG/MEG inverse problem using group penalization methods
    Tian, Tian Siva
    Li, Zhimin
    [J]. STATISTICS AND ITS INTERFACE, 2011, 4 (04) : 521 - 533
  • [3] Spatio-temporal Regularization in Linear Distributed Source Reconstruction from EEG/MEG: A Critical Evaluation
    Moritz Dannhauer
    Eric Lämmel
    Carsten H. Wolters
    Thomas R. Knösche
    [J]. Brain Topography, 2013, 26 : 229 - 246
  • [4] Spatio-temporal Regularization in Linear Distributed Source Reconstruction from EEG/MEG: A Critical Evaluation
    Dannhauer, Moritz
    Laemmel, Eric
    Wolters, Carsten H.
    Knoesche, Thomas R.
    [J]. BRAIN TOPOGRAPHY, 2013, 26 (02) : 229 - 246
  • [5] MEG/EEG source localization using spatio-temporal sparse representations
    Polonsky, A
    Zibulevsky, M
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 1001 - 1008
  • [6] A bayesian approach for EEG inverse problem Spatio-temporal regularization
    Boughariou, Jihene
    Zouch, Wassim
    Ben Hamida, Ahmed
    [J]. 2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [7] High resolution spatio-temporal EEG-MEG analysis of rolandic spikes
    Huiskamp, GJ
    van der Meij, W
    van Huffelen, A
    van Niewenhuizen, O
    [J]. JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2004, 21 (02) : 84 - 95
  • [8] A mathematical model for the spatio-temporal covariance of the background noise in MEG/EEG recordings
    de Munck, JC
    Bijma, F
    [J]. SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 1974 - 1975
  • [9] A resampling method for estimating the signal subspace of spatio-temporal EEG/MEG data
    Maris, E
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (08) : 935 - 949
  • [10] A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data
    Guillaume Crevecoeur
    Hans Hallez
    Peter Van Hese
    Yves D’Asseler
    Luc Dupré
    Rik Van de Walle
    [J]. Medical & Biological Engineering & Computing, 2008, 46 : 767 - 777