Implementation of a reaction-diffusion process in the Abaqus finite element software

被引:3
|
作者
Vasikaran, Elisabeth [1 ]
Charles, Yann [1 ]
Gilormini, Pierre [2 ]
机构
[1] Univ Paris 13, Sorbonne Paris Cite, LSPM, CNRS,UPR 3407, 99 Av Jean Baptiste Clement, F-93430 Villetaneuse, France
[2] ENSAM, CNRS, CNAM, Lab PIMM, 151 Bd Hop, F-75013 Paris, France
关键词
Reaction-diffusion; finite elements; user subroutines; Gray-Scott model; STIRRED TANK REACTOR; HYDROGEN TRANSPORT; PATTERN-FORMATION; AUTOCATALYTIC REACTIONS; NUMERICAL-SIMULATION; FORMULATION; MECHANICS; MOISTURE; MODEL; IRON;
D O I
10.1051/meca/2020010
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To increase the Abaqus software capabilities, we propose a strategy to force the software to activate hidden degrees of freedom and to include extra coupled phenomena. As an illustration, we apply this approach to the simulation of a reaction diffusion process, the Gray-Scott model, which exhibits very complex patterns. Several setups have been considered and compared with available results to analyze the abilities of our strategy and to allow the inclusion of complex phenomena in Abaqus.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The Evolution of Finite Element Approaches in Reaction-Diffusion Modeling
    Sharma, Rohit
    Yadav, Om Prakash
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2025,
  • [2] Moving Finite Element Simulations for Reaction-Diffusion Systems
    Hu, Guanghui
    Qiao, Zhonghua
    Tang, Tao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (03) : 365 - 381
  • [3] A Finite Element Method for Singularly Perturbed Reaction-diffusion Problems
    Da-Li Zhang
    Acta Mathematicae Applicatae Sinica(English Series), 2003, (01) : 25 - 30
  • [4] Finite-element solution of reaction-diffusion equations with advection
    Liu, B
    Allen, MB
    Kojouharov, H
    Chen, B
    COMPUTATIONAL METHODS IN WATER RESOURCES XI, VOL 1: COMPUTATIONAL METHODS IN SUBSURFACE FLOW AND TRANSPORT PROBLEMS, 1996, : 3 - 12
  • [5] Finite element analysis of convection dominated reaction-diffusion problems
    Galeao, AC
    Almeida, RC
    Malta, SMC
    Loula, AE
    APPLIED NUMERICAL MATHEMATICS, 2004, 48 (02) : 205 - 222
  • [6] A Finite Element Method for Singularly Perturbed Reaction-diffusion Problems
    Huo-yuan Duan
    Da-Li Zhang
    Acta Mathematicae Applicatae Sinica, 2003, 19 (1) : 25 - 30
  • [7] The Mortar Finite Element Method for cardiac reaction-diffusion models
    Pennacchio, M
    COMPUTERS IN CARDIOLOGY 2004, VOL 31, 2004, 31 : 509 - +
  • [8] Adaptive finite element methods for systems of reaction-diffusion equations
    Sandboge, R
    FINITE ELEMENT METHODS: SUPERCONVERGENCE, POST-PROCESSING, AND A POSTERIORI ESTIMATES, 1998, 196 : 227 - 235
  • [9] Enriched finite element methods for unsteady reaction-diffusion problems
    Franca, L. P.
    Ramalho, J. V. A.
    Valentin, F.
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2006, 22 (06): : 619 - 625
  • [10] Monotone iterative and finite element methods on reaction-diffusion equations
    Lu, X
    Tompkins, JA
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2001, 8 (01): : 29 - 39