Hyaluronic acid based scaffolds for tissue engineering-A review

被引:808
|
作者
Collins, Maurice N. [1 ]
Birkinshaw, Colin [2 ]
机构
[1] Univ Limerick, Stokes Res Inst, Limerick, Ireland
[2] Univ Limerick, Dept Mat Sci & Technol, Limerick, Ireland
关键词
Hyaluronic acid; Tissue engineering; Scaffolds; IN-SITU; HYBRID SCAFFOLDS; INTRAUTERINE ADHESIONS; POROUS SCAFFOLDS; HYDROGEL FILMS; CELL-ADHESION; CROSS-LINKING; BONE-MARROW; BROAD RANGE; STEM-CELLS;
D O I
10.1016/j.carbpol.2012.10.028
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This review focuses on hyaluronic acid (HA) tissue scaffolding materials. Scaffolds are defined in terms of formation mechanisms and mode of action. Solution properties are discussed as an understanding of the hydrodynamics of HA is fundamental in optimising the subsequent modification and the chemistries behind important tissue engineering applications that are emerging from recent research on this increasingly valuable carbohydrate polymer are described. Key scaffold characteristics such as mechanical, biological function and degradation are discussed. The latest technologies behind scaffold processing are assessed and the applications of HA based scaffolds are discussed. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1262 / 1279
页数:18
相关论文
共 50 条
  • [1] Hyaluronic acid-based scaffolds for tissue engineering
    Chircov, Cristina
    Grumezescu, Alexandru Mihai
    Bejenaru, Ludovic Everard
    ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY, 2018, 59 (01): : 71 - 76
  • [2] 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review
    Han Chen
    Huaqian Xue
    Huanxuan Zeng
    Minghai Dai
    Chengxuan Tang
    Liangle Liu
    Biomaterials Research, 27
  • [3] 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review
    Chen, Han
    Xue, Huaqian
    Zeng, Huanxuan
    Dai, Minghai
    Tang, Chengxuan
    Liu, Liangle
    BIOMATERIALS RESEARCH, 2023, 27 (01)
  • [4] Development of hyaluronic acid-based scaffolds for brain tissue engineering
    Wang, Tzu-Wei
    Spector, Myron
    ACTA BIOMATERIALIA, 2009, 5 (07) : 2371 - 2384
  • [5] On stiffness of scaffolds for bone tissue engineering-a numerical study
    Sturm, Stefan
    Zhou, Shiwei
    Mai, Yiu-Wing
    Li, Qing
    JOURNAL OF BIOMECHANICS, 2010, 43 (09) : 1738 - 1744
  • [6] Microvascular Tissue Engineering-A Review
    Vajda, Jernej
    Milojevic, Marko
    Maver, Uros
    Vihar, Bostjan
    BIOMEDICINES, 2021, 9 (06)
  • [7] Periosteum tissue engineering-a review
    Li, Nanying
    Song, Juqing
    Zhu, Guanglin
    Li, Xiaoyu
    Liu, Lei
    Shi, Xuetao
    Wang, Yingjun
    BIOMATERIALS SCIENCE, 2016, 4 (11) : 1554 - 1561
  • [8] Collagen-hyaluronic acid scaffolds for adipose tissue engineering
    Davidenko, N.
    Campbell, J. J.
    Thian, E. S.
    Watson, C. J.
    Cameron, R. E.
    ACTA BIOMATERIALIA, 2010, 6 (10) : 3957 - 3968
  • [9] Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications
    Sekar, Muthu Parkkavi
    Suresh, Shruthy
    Zennifer, Allen
    Sethuraman, Swaminathan
    Sundaramurthi, Dhakshinamoorthy
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (06) : 3134 - 3159
  • [10] Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering
    Correia, Clara R.
    Moreira-Teixeira, Liliana S.
    Moroni, Lorenzo
    Reis, Rui L.
    van Blitterswijk, Clemens A.
    Karperien, Marcel
    Mano, Joao F.
    TISSUE ENGINEERING PART C-METHODS, 2011, 17 (07) : 717 - 730