Robust grasp preimages under unknown mass and friction distributions

被引:4
|
作者
Price, Andrew [1 ]
Balakirsky, Stephen [2 ]
Christensen, Henrik [3 ]
机构
[1] Georgia Inst Technol, Inst Robot & Intelligent Machines, 801 Atlantic Dr NW, Atlanta, GA 30332 USA
[2] Georgia Tech Res Inst, Robot & Autonomous Syst Div, Atlanta, GA 30332 USA
[3] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
关键词
Grasping; grasp planning; differential games; motion planning; sliding; STRATEGY; MECHANICS; PARTS;
D O I
10.3233/ICA-180568
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work introduces an algorithm for the computation of robust grasp preimages: the space of initial poses from which an object will converge into the desired grasp. Building on existing motion and friction models for pushed objects under contact, we describe a game-theoretic technique for estimating worst-case scenarios for difficult to observe properties like pressure and friction distributions. The use of this antagonistic model in the grasping simulations provides for a conservative estimate of the preimage of the given grasp. The antagonistic model is then validated against data from real grasping experiments on various robot grippers.
引用
收藏
页码:99 / 110
页数:12
相关论文
共 50 条
  • [1] Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation Under Disturbances and Unknown Dynamics
    Khadivar, Farshad
    Billard, Aude
    IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (05) : 3350 - 3367
  • [2] A robust moving horizon estimation under unknown distributions of process or measurement noises
    Valipour, Mahshad
    Ricardez-Sandoval, Luis A.
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 157
  • [3] Center-of-Mass-based Robust Grasp Planning for Unknown Objects Using Tactile-Visual Sensors
    Feng, Qian
    Chen, Zhaopeng
    Deng, Jun
    Gao, Chunhui
    Zhang, Jianwei
    Knoll, Alois
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 610 - 617
  • [4] Robust Sparse Bayesian Learning for Sparse Signal Recovery Under Unknown Noise Distributions
    Huang, Kaide
    Yang, Zhiyong
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (03) : 1365 - 1382
  • [5] Robust Sparse Bayesian Learning for Sparse Signal Recovery Under Unknown Noise Distributions
    Kaide Huang
    Zhiyong Yang
    Circuits, Systems, and Signal Processing, 2021, 40 : 1365 - 1382
  • [6] LIFETIME DISTRIBUTIONS UNDER UNKNOWN ENVIRONMENT
    LEE, MLT
    GROSS, AJ
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1991, 29 (1-2) : 137 - 143
  • [7] On nonlinear robust control for robot manipulator with unknown friction
    Gortcheva, E.
    Poznyak, A.
    Diaz de Leon, V.
    Proceedings of the IEEE Conference on Decision and Control, 1998, 2 : 2019 - 2020
  • [8] On nonlinear robust control for robot manipulator with unknown friction
    Gortcheva, E
    Poznyak, A
    de Leon, VD
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2019 - 2020
  • [9] Distributed decision fusion under unknown distributions
    Rao, NSV
    Iyengar, SS
    OPTICAL ENGINEERING, 1996, 35 (03) : 617 - 624
  • [10] Multiple sensor fusion under unknown distributions
    Rao, NSV
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (02): : 285 - 299