DIRECTION OF BIFURCATION FOR SOME NON-AUTONOMOUS PROBLEMS

被引:0
|
作者
Korman, Philip [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
Global solution curves; direction of bifurcation; continuation in a global parameter; BOUNDARY-VALUE-PROBLEMS; EXACT MULTIPLICITY; CURVES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the exact multiplicity of positive solutions, and the global solution structure for several classes of non-autonomous two-point problems. We present two situations where the direction of turn can be computed rather directly. As an application, we consider a problem from combustion theory with a sign-changing potential. We illustrate our results by numerical computations, using a novel method.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] NON-AUTONOMOUS PARABOLIC BIFURCATION
    Vivas, Liz
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (06) : 2525 - 2537
  • [2] NON-AUTONOMOUS BIFURCATION IN IMPULSIVE SYSTEMS
    Akhmet, M. U.
    Kashkynbayev, A.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (74) : 1 - 23
  • [3] Families of Solution Curves for Some Non-autonomous Problems
    Philip Korman
    Acta Applicandae Mathematicae, 2016, 143 : 165 - 178
  • [4] Families of Solution Curves for Some Non-autonomous Problems
    Korman, Philip
    ACTA APPLICANDAE MATHEMATICAE, 2016, 143 (01) : 165 - 178
  • [5] On non-autonomous evolutionary problems
    Rainer Picard
    Sascha Trostorff
    Marcus Waurick
    Maria Wehowski
    Journal of Evolution Equations, 2013, 13 : 751 - 776
  • [6] Pitchfork bifurcation for non-autonomous interval maps
    D'Aniello, Emma
    Oliveira, Henrique
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (03) : 291 - 302
  • [7] On non-autonomous evolutionary problems
    Picard, Rainer
    Trostorff, Sascha
    Waurick, Marcus
    Wehowski, Maria
    JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (04) : 751 - 776
  • [8] Resonance Problems for Some Non-autonomous Ordinary Differential Equations
    Mawhin, Jean
    STABILITY AND BIFURCATION THEORY FOR NON-AUTONOMOUS DIFFERENTIAL EQUATIONS, CETRARO, ITALY 2011, 2013, 2065 : 103 - 184
  • [9] A BIFURCATION PROBLEM TO HOMOCLINIC ORBITS FOR NON-AUTONOMOUS SYSTEMS
    COSTAL, F
    RODRIGUEZ, JA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 105 (02) : 395 - 404
  • [10] Bifurcation and chaos of a non-autonomous rotational machine systems
    Zhang, Jian-Gang
    Yu, Jian-Ning
    Chu, Yan-Dong
    Li, Xian-Feng
    Chang, Ying-Xiang
    SIMULATION MODELLING PRACTICE AND THEORY, 2008, 16 (10) : 1588 - 1605