Two-stage lung nodule detection framework using enhanced UNet and convolutional LSTM networks in CT images

被引:21
|
作者
Agnes, S. Akila [1 ]
Anitha, J. [2 ]
Solomon, A. Arun [3 ]
机构
[1] GMR Inst Technol, Dept Comp Sci & Engn, Rajam, Andhra Pradesh, India
[2] Karunya Inst Technol & Sci, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India
[3] GMR Inst Technol, Dept Civil Engn, Rajam, Andhra Pradesh, India
关键词
Computer-aided detection; Deep learning; Convolution long short-term memory; Lung nodule detection; Convolutional neural networks; Semantic segmentation; PULMONARY NODULES; AUTOMATIC DETECTION; CAD;
D O I
10.1016/j.compbiomed.2022.106059
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lung cancer is one of the leading causes of cancer deaths globally, and lung nodules are the primary indicators that aid in early detection. The computer-aided detection (CADe) system acts as a second reader, reducing the variability in lung cancer risk assessment across physicians. This work aims to improve the performance of CADe systems by developing high sensitive and resilient detection networks using deep learning. This paper proposes a novel CADe framework to detect nodules from CT scans using an enhanced UNet in conjunction with a pyramid dilated convolutional long short term memory (PD-CLSTM) network. The proposed CADe system works in two stages: nodule detection and false nodule elimination. In the first stage, a modified UNet-based model, Atrous UNet+, is proposed to detect nodule candidates from axial slices using dilation and ensemble mechanisms. Dilated convolution is a powerful technique for dense prediction by incorporating larger context information without increasing the computation load. Ensemble skip connections fuse multilevel semantic features that help detect nodules of diverse sizes. In the second stage, The pyramid dilated convolutional LSTM network is proposed to identify true nodules using inter-slice and intra-slice spatial features of 3D nodule patches. In this work, a novel idea of applying convolution long short-term memory (ConvLSTM) is attempted to categorize true nodules from false nodules and help to eliminate false nodules. Experimental results on the LUNA16 dataset show that our proposed CADe system achieves the best average sensitivity of 0.930 at seven predefined FPRs: 1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs per scan. Also, the proposed CADe system detects small nodules in the range of 5-9 mm with a sensitivity of 0.92 and other nodules (> 10 mm) with a sensitivity of 0.93, resulting in a high detection rate in recognizing nodules of diverse sizes.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Two-Stage Convolutional Neural Networks for Lung Nodule Detection
    Cao, Haichao
    Liu, Hong
    Song, Enmin
    Ma, Guangzhi
    Xu, Xiangyang
    Jin, Renchao
    Liu, Tengying
    Hung, Chih-Cheng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (07) : 2006 - 2015
  • [2] Automatic Lung Nodule Detection in CT Images Using Convolutional Neural Networks
    Shaukat, Furcian
    Javed, Kamran
    Raja, Gulistan
    Mir, Junaid
    Shahid, Muhammad Laiq Ur Rahman
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (10) : 1364 - 1373
  • [3] Lung Nodule Detection in CT Images using Deep Convolutional Neural Networks
    Golan, Rotem
    Jacob, Christian
    Denzinger, Jorg
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 243 - 250
  • [4] Pulmonary Lung Nodule Detection from Computed Tomography Images Using Two-Stage Convolutional Neural Network
    Jain, Sweta
    Choudhari, Pruthviraj
    Gour, Mahesh
    COMPUTER JOURNAL, 2023, 66 (04): : 785 - 795
  • [5] Lung Nodule Classification using A Novel Two-stage Convolutional Neural Networks Structure
    An, Yang
    Hu, Tianren
    Wang, Jiaqi
    Lyu, Juan
    Banerjee, Sunctra
    Ling, Sai Ho
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6259 - 6262
  • [6] Lung Nodule Detection using Convolutional Neural Networks with Transfer Learning on CT Images
    Gao, Jun
    Jiang, Qian
    Zhou, Bo
    Chen, Daozheng
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2021, 24 (06) : 814 - 824
  • [7] A Two-Stage Framework for Automated Malignant Pulmonary Nodule Detection in CT Scans
    EL-Bana, Shimaa
    Al-Kabbany, Ahmad
    Sharkas, Maha
    DIAGNOSTICS, 2020, 10 (03)
  • [8] Automated pulmonary nodule detection in CT images using deep convolutional neural networks
    Xie, Hongtao
    Yang, Dongbao
    Sun, Nannan
    Chen, Zhineng
    Zhang, Yongdong
    PATTERN RECOGNITION, 2019, 85 : 109 - 119
  • [9] LUNG NODULE DETECTION IN CT USING 3D CONVOLUTIONAL NEURAL NETWORKS
    Huang, Xiaojie
    Shan, Junjie
    Vaidya, Vivek
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 379 - 383
  • [10] Two-Stage Convolutional Neural Network for Ship and Spill Detection Using SLAR Images
    Nieto-Hidalgo, Mario
    Gallego, Antonio-Javier
    Gil, Pablo
    Pertusa, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5217 - 5230