An Improved Anisotropic Markov Random Field Approach for Prestack Seismic Inversion

被引:3
|
作者
Guo, Qiang [1 ]
Zhang, Hongbing [1 ]
Wei, Kuiye [1 ]
Li, Zhen [1 ]
Shang, Zuoping [2 ]
机构
[1] Hohai Univ, Coll Earth Sci & Engn, Nanjing 211100, Jiangsu, Peoples R China
[2] Hohai Univ, Coll Mech & Mat, Nanjing 211100, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive; anisotropic; Markov random field (MRF); seismic inversion; GAS;
D O I
10.1109/LGRS.2018.2878827
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents an improved anisotropic Markov random field (IAMRF) approach for prestack seismic inversion. Instead of using multiple potential functions or adding extra weights on clique potentials as done in existing AMRF approaches, IAMRF removes the effects of anisotropic gradients in subsurface models by means of scaling parameters, which directly tune the model gradients right above. In particular, the scaling parameters are not only directionally varied at certain iterations but also updated by a statistical method at every iteration throughout the inversion, thereby generating more accurate and better edge-preserving inverted results. The prestack seismic inversion based on the IAMRF prior constraints is demonstrated on a field data example, which presents encouraging results.
引用
收藏
页码:633 / 637
页数:5
相关论文
共 50 条
  • [1] Prestack Seismic Inversion Based on Anisotropic Markov Random Field
    Guo, Qiang
    Zhang, Hongbing
    Han, Feilong
    Shang, Zuoping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02): : 1069 - 1079
  • [2] Hybrid Seismic Inversion Based on Multi-Order Anisotropic Markov Random Field
    Guo, Qiang
    Zhang, Hongbing
    Cao, Haitao
    Xiao, Wei
    Han, Feilong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01): : 407 - 420
  • [3] Prestack inversion based on anisotropic Markov random field–maximum posterior probability inversion and its application to identify shale gas sweet spots
    Kang-Ning Wang
    Zan-Dong Sun
    Ning Dong
    Applied Geophysics, 2015, 12 : 533 - 544
  • [4] Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme
    Yu-Kun Tian
    Hui Zhou
    Han-Ming Chen
    Ya-Ming Zou
    Shou-Jun Guan
    Applied Geophysics, 2013, 10 : 453 - 460
  • [5] Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme
    Tian Yu-Kun
    Zhou Hui
    Chen Han-Ming
    Zou Ya-Ming
    Guan Shou-Jun
    APPLIED GEOPHYSICS, 2013, 10 (04) : 453 - 460
  • [6] Prestack inversion based on anisotropic Markov random field-maximum posterior probability inversion and its application to identify shale gas sweet spots
    Wang Kang-Ning
    Sun Zan-Dong
    Dong Ning
    APPLIED GEOPHYSICS, 2015, 12 (04) : 533 - 544
  • [7] A nonlinear method for multiparameter inversion of pre-stack seismic data based on anisotropic Markov random field
    Zhang, Hongbing
    Guo, Qiang
    Liang, Lifeng
    Cao, Chenghao
    Shang, Zuoping
    GEOPHYSICAL PROSPECTING, 2018, 66 (03) : 461 - 477
  • [8] Study on prestack seismic inversion using Markov Chain Monte Carlo
    Zhang Guang-Zhi
    Wang Dan-Yang
    Yin Xing-Yao
    Li Ning
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2011, 54 (11): : 2926 - 2932
  • [9] Simultaneous Inversion for Pre-stack Seismic Data Based on Markov Random Field
    Zhang, Hongbing
    Guo, Qiang
    Liang, Lifeng
    Shang, Zuoping
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 1023 - 1027
  • [10] Prestack seismic inversion with structural constraints
    Li, Dong
    Peng, Suping
    Zhang, Rui
    Guo, Yinling
    Lu, Yongxu
    Cui, Xiaoqin
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2021, 9 (02): : T495 - T506