NCG q-Deformed Weyl-Heisenberg Algebra

被引:0
|
作者
Harrat, M. [1 ]
Mebarki, N. [1 ]
Salah, A. Redouane [1 ]
机构
[1] Mentouri Univ, Lab Phys Math & Subatom, Constantine, Algeria
关键词
Non commutative geometry; Deformation theory; COMPACT MATRIX PSEUDOGROUPS; STANDARD MODEL; SPACE-TIME; QUANTUM;
D O I
10.1063/1.4715479
中图分类号
O59 [应用物理学];
学科分类号
摘要
A non commutative space-time q-deformed Weyl-Heisenberg algebra is derived within the weak deformation and non commutativity parameters approximation.. It is shown that the resulting algebra is trilinear which generalizes the bilinear commutation relations of the q-deformation and non commutativity cases.
引用
收藏
页码:469 / 471
页数:3
相关论文
共 50 条
  • [1] Non Uniqueness and Equivalence of the q-deformed Weyl-Heisenberg Algebra Representations
    Boucerredj, N.
    Mebarki, N.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 314 - 317
  • [2] COHERENT STATE OF α-DEFORMED WEYL-HEISENBERG ALGEBRA
    Dehdashti, Sh.
    Mahdifar, A.
    Roknizadeh, R.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (05)
  • [3] Deformed Weyl-Heisenberg algebra and quantum decoherence effect
    Dehdashti, Sh
    Harouni, M. Bagheri
    Mahdifar, A.
    Roknizadeh, R.
    LASER PHYSICS, 2014, 24 (05)
  • [4] REPRESENTATIONS OF A Q-DEFORMED HEISENBERG ALGEBRA
    HEBECKER, A
    SCHRECKENBERG, S
    SCHWENK, J
    WEICH, W
    WESS, J
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 64 (02): : 355 - 359
  • [5] Operator realizations of the q-deformed Heisenberg algebra
    Department of Chemistry, Zhengzhou University, Zhengzhou 450052, China
    不详
    Phys Lett Sect A Gen At Solid State Phys, 1600, 4-5 (251-256):
  • [6] A calculus based on a q-deformed Heisenberg algebra
    Cerchiai, BL
    Hinterding, R
    Madore, J
    Wess, J
    EUROPEAN PHYSICAL JOURNAL C, 1999, 8 (03): : 547 - 558
  • [7] Operator representations of a q-deformed Heisenberg algebra
    Schmüdgen, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (09) : 4596 - 4605
  • [8] Operator realizations of the q-deformed Heisenberg algebra
    Pan, HY
    Zhao, ZS
    PHYSICS LETTERS A, 2001, 282 (4-5) : 251 - 256
  • [9] Fourier transformations for the q-deformed Heisenberg algebra
    Schwenk, J
    QUANTUM GROUPS AND THEIR APPLICATIONS IN PHYSICS, 1996, 127 : 525 - 540
  • [10] A calculus based on a q-deformed Heisenberg algebra
    Cerchiai B.L.
    Hinterding R.
    Madore J.
    Wess J.
    The European Physical Journal C - Particles and Fields, 1999, 8 (3): : 547 - 558