Comparison of two prognostic models in trauma outcome

被引:10
|
作者
Cook, A. [1 ,2 ]
Osler, T. [3 ]
Glance, L. [5 ]
Lecky, F. [9 ]
Bouamra, O. [10 ]
Weddle, J. [6 ]
Gross, B. [4 ]
Ward, J. [1 ]
Moore, F. O., III [1 ]
Rogers, F. [7 ]
Hosmer, D. [8 ]
机构
[1] Chandler Reg Med Ctr, Dept Surg, 485 South Dobson Rd,Suite 201, Chandler, AZ USA
[2] Univ Arizona, Mel & Enid Zuckerman Coll Publ Hlth, Tucson, AZ USA
[3] Univ Vermont, Dept Surg, Burlington, VT 05405 USA
[4] Univ Vermont, Coll Med, Burlington, VT USA
[5] Univ Rochester, Dept Anesthesiol, Rochester, NY USA
[6] Baylor Univ, Med Ctr, Dept Surg, Dallas, TX 75246 USA
[7] Lancaster Gen Hosp, Dept Surg, Lancaster, PA USA
[8] Univ Massachusetts, Dept Biostat & Epidemiol, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA
[9] Univ Sheffield, Dept Emergency Med, Sheffield, S Yorkshire, England
[10] Univ Manchester, Inst Populat Hlth, Manchester, Lancs, England
关键词
INJURY SEVERITY SCORE; MORTALITY PREDICTION MODEL; CARE; INDEX;
D O I
10.1002/bjs.10764
中图分类号
R61 [外科手术学];
学科分类号
摘要
BackgroundThe Trauma Audit and Research Network (TARN) in the UK publicly reports hospital performance in the management of trauma. The TARN risk adjustment model uses a fractional polynomial transformation of the Injury Severity Score (ISS) as the measure of anatomical injury severity. The Trauma Mortality Prediction Model (TMPM) is an alternative to ISS; this study compared the anatomical injury components of the TARN model with the TMPM. MethodsData from the National Trauma Data Bank for 2011-2015 were analysed. Probability of death was estimated for the TARN fractional polynomial transformation of ISS and compared with the TMPM. The coefficients for each model were estimated using 80 per cent of the data set, selected randomly. The remaining 20 per cent of the data were used for model validation. TMPM and TARN were compared using calibration curves, measures of discrimination (area under receiver operating characteristic curves; AUROC), proximity to the true model (Akaike information criterion; AIC) and goodness of model fit (Hosmer-Lemeshow test). ResultsSome 438058 patient records were analysed. TMPM demonstrated preferable AUROC (0882 for TMPM versus 0845 for TARN), AIC (18204 versus 21163) and better fit to the data (324 versus 1530) compared with TARN. ConclusionTMPM had greater discrimination, proximity to the true model and goodness-of-fit than the anatomical injury component of TARN. TMPM should be considered for the injury severity measure for the comparative assessment of trauma centres. Trauma Mortality Prediction Model appears better
引用
收藏
页码:513 / 519
页数:7
相关论文
共 50 条
  • [1] Visual outcome after open globe injury: a comparison of two prognostic models—the Ocular Trauma Score and the Classification and Regression Tree
    C Yu Wai Man
    D Steel
    Eye, 2010, 24 : 84 - 89
  • [2] Visual outcome after open globe injury: a comparison of two prognostic models-the Ocular Trauma Score and the Classification and Regression Tree
    Man, C. Yu Wai
    Steel, D.
    EYE, 2010, 24 (01) : 84 - 89
  • [3] Comparison of the Ocular Trauma Score and Pediatric Ocular Trauma Score as Two Prognostic Models in Pediatric Open Globe Injuries
    Pahor, Dusica
    Gracner, Tomaz
    KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 2021, 238 (01) : 67 - 72
  • [4] Comparison of two prognostic models for acute pulmonary embolism
    Vanni, S.
    Gori, S.
    Viviani, G.
    Socci, F.
    Nazerian, P.
    Pepe, G.
    Polidori, G.
    Conti, A.
    Grifoni, S.
    EUROPEAN HEART JOURNAL, 2010, 31 : 915 - 916
  • [5] Comparison of two prognostic models for acute pulmonary embolism
    Youssef, Abd-ElRahim Ibrahim
    ElShahat, Hanan Mohamed
    Radwan, Amany Shaker
    Al-Sadek, Maha El-Sayed
    EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS, 2016, 65 (04): : 771 - 779
  • [6] A Genomic Score Prognostic of Outcome in Trauma Patients
    Warren, H. Shaw
    Elson, Constance M.
    Hayden, Douglas L.
    Schoenfeld, David A.
    Cobb, J. Perren
    Maier, Ronald V.
    Moldawer, Lyle L.
    Moore, Ernest E.
    Harbrecht, Brian G.
    Pelak, Kimberly
    Cuschieri, Joseph
    Herndon, David N.
    Jeschke, Marc G.
    Finnerty, Celeste C.
    Brownstein, Bernard H.
    Hennessy, Laura
    Mason, Philip H.
    Tompkins, Ronald G.
    MOLECULAR MEDICINE, 2009, 15 (7-8) : 220 - 227
  • [7] A Genomic Score Prognostic of Outcome in Trauma Patients
    H. Shaw Warren
    Constance M. Elson
    Douglas L. Hayden
    David A. Schoenfeld
    J. Perren Cobb
    Ronald V. Maier
    Lyle L. Moldawer
    Ernest E. Moore
    Brian G. Harbrecht
    Kimberly Pelak
    Joseph Cuschieri
    David N. Herndon
    Marc G. Jeschke
    Celeste C. Finnerty
    Bernard H. Brownstein
    Laura Hennessy
    Philip H. Mason
    Ronald G. Tompkins
    Molecular Medicine, 2009, 15 : 220 - 227
  • [8] Factors Associated with Poor Outcome in Alcoholic Hepatitis and Comparison of Various Prognostic Models
    Sawant, Prabha
    Govindraj, Srinivas Mallasandra
    Samarth, Amol
    Rao, Satheesh
    Vashishtha, Chitranshu
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2009, 104 : S138 - S138
  • [9] Comparison of two outcome measures in assessing paediatric trauma team activation appropriateness
    Jowett, H. E.
    Bressan, S.
    Franklin, K.
    King, S.
    Oakley, E.
    Palmer, C. S.
    INTERNATIONAL EMERGENCY NURSING, 2014, 22 (04) : 253 - 254
  • [10] Two models for outcome prediction -: A comparison of logistic regression and neural networks
    Linder, R.
    Koenig, I. R.
    Weimar, C.
    Diener, H. C.
    Poeppl, S. J.
    Ziegler, A.
    METHODS OF INFORMATION IN MEDICINE, 2006, 45 (05) : 536 - 540