MULTIPLICATIVE FORM OF THE LAGRANGIAN

被引:4
|
作者
Surawuttinack, K. [1 ]
Yoo-Kong, S. [1 ,2 ,3 ]
Tanasittikosol, M. [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Theoret & Computat Phys Grp, Dept Phys, Fac Sci, Khet Thung Khru, Krung Thep Maha, Thailand
[2] King Mongkuts Univ Technol Thonburi, Theoret & Computat Sci Ctr, Fac Sci, Khet Thung Khru, Krung Thep Maha, Thailand
[3] King Mongkuts Univ Technol Thonburi, Ratchaburi Campus, Khet Thung Khru, Krung Thep Maha, Thailand
关键词
nonuniqueness; multiplicative form; Hamiltonian;
D O I
10.1134/S0040577916120023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain an alternative class of Lagrangians in the so-called the multiplicative form for a system with one degree of freedom in the nonrelativistic and the relativistic cases. This new form of the Lagrangian can be regarded as a one-parameter class with the parameter lambda obtained using an extension of the standard additive form of the Lagrangian because both forms yield the same equation of motion. We note that the multiplicative form of the Lagrangian can be regarded as a generating function for obtaining an infinite hierarchy of Lagrangians that yield the same equation of motion. This nontrivial set of Lagrangians confirms that the Lagrange function is in fact nonunique.
引用
收藏
页码:1693 / 1711
页数:19
相关论文
共 50 条
  • [1] Multiplicative form of the Lagrangian
    K. Surawuttinack
    S. Yoo-Kong
    M. Tanasittikosol
    Theoretical and Mathematical Physics, 2016, 189 : 1693 - 1711
  • [2] On the Lagrangian form of the variational equations of Lagrangian dynamical systems
    Delgado, J
    Núñez-Yépez, HN
    Salas-Brito, AL
    CHAOS SOLITONS & FRACTALS, 2004, 20 (05) : 925 - 935
  • [3] A Lagrangian form of tangent forms
    Popescu, Paul
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 77 : 113 - 130
  • [4] Lagrangian form of Schrodinger equation
    Arsenovic, D.
    Buric, N.
    Davidovic, D. M.
    Prvanovic, S.
    FOUNDATIONS OF PHYSICS, 2014, 44 (07) : 725 - 735
  • [5] A Lagrangian form for the T - Ω formulation
    Vinsard, Gerard
    Dufour, Stephane
    Saatdjian, Esteban
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2016, 73 (03):
  • [6] FORM OF THE MANIFESTLY COVARIANT LAGRANGIAN
    JOHNS, OD
    AMERICAN JOURNAL OF PHYSICS, 1985, 53 (10) : 982 - 988
  • [7] SUM FORM EQUATIONS OF MULTIPLICATIVE TYPE
    KANNAPPAN, P
    SAHOO, PK
    ACTA MATHEMATICA HUNGARICA, 1993, 61 (3-4) : 203 - 217
  • [8] Natural TeV cutoff of the Higgs field from a multiplicative Lagrangian
    Supanyo, Suppanat
    Tanasittikosol, Monsit
    Yoo-Kong, Sikarin
    PHYSICAL REVIEW D, 2022, 106 (03)
  • [9] Prescribing the Maslov Form of Lagrangian Immersions
    K. Smoczyk
    Geometriae Dedicata, 2002, 91 : 59 - 69
  • [10] Weyl's Lagrangian in teleparallel form
    Burnett, James
    Vassiliev, Dmitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)