Topological lattice actions for the 2d XY model

被引:10
|
作者
Bietenholz, W. [1 ]
Boegli, M. [2 ]
Niedermayer, F. [2 ,3 ]
Pepe, M. [4 ]
Rejon-Barrera, F. G. [1 ]
Wiese, U. -J. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[2] Univ Bern, Albert Einstein Ctr Fundamental Phys, Inst Theoret Phys, CH-3012 Bern, Switzerland
[3] Eotvos Lorand Univ, Inst Theoret Phys HAS, H-1117 Budapest, Hungary
[4] Sez Milano Bicocca, INFN, I-20126 Milan, Italy
来源
关键词
Nonperturbative Effects; Lattice Quantum Field Theory; Field Theories in Lower Dimensions; Sigma Models; 2-DIMENSIONAL STEP MODEL; NONLINEAR SIGMA-MODEL; MONTE-CARLO; CRITICAL-BEHAVIOR; LOGARITHMIC CORRECTIONS; UNIVERSALITY CLASS; PHASE-TRANSITIONS; SCALING FUNCTIONS; EXCITED-STATES; SYSTEMS;
D O I
10.1007/JHEP03(2013)141
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition - at least up to moderate vortex suppression. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. However, deviations from the expected universal behaviour of the lattice artifacts are observed. In the massless phase, the BKT value of the critical exponent eta(c) is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Topological lattice actions for the 2d XY model
    W. Bietenholz
    M. Bögli
    F. Niedermayer
    M. Pepe
    F. G. Rejón-Barrera
    U.-J. Wiese
    Journal of High Energy Physics, 2013
  • [2] Exactly solvable 2D topological Kondo lattice model
    Karnaukhov, Igor N.
    Slieptsov, Igor O.
    EPL, 2015, 109 (05)
  • [3] TOPOLOGICAL CHARGE ON THE LATTICE - THE 2D CPN-1 MODEL
    FARCHIONI, F
    PAPA, A
    PHYSICS LETTERS B, 1993, 306 (1-2) : 108 - 114
  • [4] STABLE TOPOLOGICAL SKYRMIONS ON THE 2D LATTICE
    WARD, RS
    LETTERS IN MATHEMATICAL PHYSICS, 1995, 35 (04) : 385 - 393
  • [5] Quench dynamics of the 2d XY model
    Jelic, Asja
    Cugliandolo, Leticia F.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [6] Quantum effects in the 2D XY model
    Schindelin, C
    Fehske, H
    Büttner, H
    Ihle, D
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 (PART I) : 403 - 404
  • [7] The Antiferromagnetic XY Model on the Triangular Lattice: Topological Singularities
    Bach, Annika
    Cicalese, Marco
    Kreutz, Leonard
    Orlando, Gianluca
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (06) : 2411 - 2475
  • [8] COMPUTATION OF THE TOPOLOGICAL SUSCEPTIBILITY FOR THE 2D CP3 MODEL ON A SPHERICAL LATTICE
    JOZEFINI, B
    MULLERPREUSSKER, M
    SCHULTKA, N
    PHYSICS LETTERS B, 1990, 234 (03) : 329 - 332
  • [9] PHASE-TRANSITION IN THE 2D XY MODEL
    GUPTA, R
    DELAPP, J
    BATROUNI, GG
    FOX, GC
    BAILLIE, CF
    APOSTOLAKIS, J
    PHYSICAL REVIEW LETTERS, 1988, 61 (17) : 1996 - 1999
  • [10] Photonic Topological Zero-Modes in a 2D Lattice
    Noh, Jiho
    Benalcazar, Wladimir
    Hughes, Taylor L.
    Rechtsman, Mikael C.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,